Core–Shell MIL-125(Ti)@In2S3 S-Scheme Heterojunction for Boosting CO2 Photoreduction

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mazhar Khan, Zeeshan Akmal, Muhammad Tayyab, Seemal Mansoor, Dongni Liu, Junwen Ding, Ziwei Ye, Jinlong Zhang, Shiqun Wu* and Lingzhi Wang*, 
{"title":"Core–Shell MIL-125(Ti)@In2S3 S-Scheme Heterojunction for Boosting CO2 Photoreduction","authors":"Mazhar Khan,&nbsp;Zeeshan Akmal,&nbsp;Muhammad Tayyab,&nbsp;Seemal Mansoor,&nbsp;Dongni Liu,&nbsp;Junwen Ding,&nbsp;Ziwei Ye,&nbsp;Jinlong Zhang,&nbsp;Shiqun Wu* and Lingzhi Wang*,&nbsp;","doi":"10.1021/acsami.5c0381710.1021/acsami.5c03817","DOIUrl":null,"url":null,"abstract":"<p >Heterojunctions based on metal–organic framework (MOF) materials have emerged as promising systems for CO<sub>2</sub> photoreduction under sacrificial agent-free conditions. However, the rational design and precise construction of these heterostructures remain significant challenges. In this study, we report the development of a core–shell heterojunction via the <i>in situ</i> growth of In<sub>2</sub>S<sub>3</sub> nanosheets on MIL-125(Ti) for efficient CO<sub>2</sub> photoreduction. Comprehensive characterization elucidates strong interfacial interactions and substantial work function mismatches between MIL-125(Ti) and In<sub>2</sub>S<sub>3</sub>, which drive the formation of a robust interfacial electric field (IEF) and facilitate the establishment of an S-scheme heterojunction. The S-scheme heterojunction retains the strong oxidative and reductive potentials of its components, promoting efficient charge separation and transfer. <i>In situ</i> infrared spectroscopy provides evidence that the formation of the S-scheme heterojunction significantly enhances the production of critical intermediates essential for the CO<sub>2</sub> reduction process. Moreover, density functional theory calculations reveal that the heterojunction construction significantly facilitates CO<sub>2</sub> activation and lowers the energy barrier. The optimized MT-2@IS achieves an exceptional CH<sub>4</sub> production rate of 27.65 μmol g<sup>–1</sup> h<sup>–1</sup> without the use of photosensitizers or sacrificial agents, representing 27-fold and 8.9-fold improvements compared to pristine MIL-125(Ti) and In<sub>2</sub>S<sub>3</sub>. This work provides valuable insights into the design of MOF-based heterojunctions and establishes a robust framework for advancing CO<sub>2</sub> photoreduction technologies.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 21","pages":"30895–30909 30895–30909"},"PeriodicalIF":8.2000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c03817","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Heterojunctions based on metal–organic framework (MOF) materials have emerged as promising systems for CO2 photoreduction under sacrificial agent-free conditions. However, the rational design and precise construction of these heterostructures remain significant challenges. In this study, we report the development of a core–shell heterojunction via the in situ growth of In2S3 nanosheets on MIL-125(Ti) for efficient CO2 photoreduction. Comprehensive characterization elucidates strong interfacial interactions and substantial work function mismatches between MIL-125(Ti) and In2S3, which drive the formation of a robust interfacial electric field (IEF) and facilitate the establishment of an S-scheme heterojunction. The S-scheme heterojunction retains the strong oxidative and reductive potentials of its components, promoting efficient charge separation and transfer. In situ infrared spectroscopy provides evidence that the formation of the S-scheme heterojunction significantly enhances the production of critical intermediates essential for the CO2 reduction process. Moreover, density functional theory calculations reveal that the heterojunction construction significantly facilitates CO2 activation and lowers the energy barrier. The optimized MT-2@IS achieves an exceptional CH4 production rate of 27.65 μmol g–1 h–1 without the use of photosensitizers or sacrificial agents, representing 27-fold and 8.9-fold improvements compared to pristine MIL-125(Ti) and In2S3. This work provides valuable insights into the design of MOF-based heterojunctions and establishes a robust framework for advancing CO2 photoreduction technologies.

Abstract Image

核壳MIL-125(Ti)@In2S3 S-Scheme异质结促进CO2光还原
基于金属-有机框架(MOF)材料的异质结在无牺牲剂条件下成为CO2光还原的有前途的系统。然而,这些异质结构的合理设计和精确构造仍然是一个重大挑战。在这项研究中,我们报道了通过在MIL-125(Ti)上原位生长In2S3纳米片来开发一个核壳异质结,用于有效的CO2光还原。综合表征表明MIL-125(Ti)和In2S3之间存在强界面相互作用和大量功函数失配,这驱动了强大界面电场(IEF)的形成,并促进了s型异质结的建立。s型异质结保留了其组分的强氧化和还原电位,促进了有效的电荷分离和转移。原位红外光谱提供的证据表明,s型异质结的形成显著提高了二氧化碳还原过程中必需的关键中间体的产生。此外,密度泛函理论计算表明,异质结的构建显著促进了CO2的活化,降低了能垒。优化后的MT-2@IS在不使用光敏剂或牺牲剂的情况下,CH4的产率达到27.65 μmol g-1 h-1,比原始MIL-125(Ti)和In2S3分别提高了27倍和8.9倍。这项工作为mof基异质结的设计提供了有价值的见解,并为推进CO2光还原技术建立了一个强大的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信