Assembly Orientation Engineering of Organic Microcrystal Laser for Modulating Cavity Dimension

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yinan Yao, Shizhe Ren, Yong Sheng Zhao* and Lunhui Guan*, 
{"title":"Assembly Orientation Engineering of Organic Microcrystal Laser for Modulating Cavity Dimension","authors":"Yinan Yao,&nbsp;Shizhe Ren,&nbsp;Yong Sheng Zhao* and Lunhui Guan*,&nbsp;","doi":"10.1021/acsami.5c0628410.1021/acsami.5c06284","DOIUrl":null,"url":null,"abstract":"<p >The modulation of cavity dimension is crucial for the realization of versatile micro-/nanolasers, yet the fabrication of molecular crystals is derived from the high-orientation assembly mode of molecules, limiting the optical cavity to a low-dimensional anisotropic topography with sharp corners and high thresholds. Here, we propose an innovative strategy to achieve the assembly orientation engineering of organic microcrystals for flexibly modulating cavity dimension. The isotropic and anisotropic assembly orientations generate different-dimensional microcavity structures (one-dimensional microbelts and three-dimensional (3D) microspheres) with distinct lasing actions. The 3D microspheres with perfect spherical morphology and strong light confinement capability function as low-threshold whispering gallery-mode microlasers. Moreover, the single-crystalline microbelts with smooth lateral sides act as Fabry–Pérot-mode lateral-cavity microlasers, which are formed between two lateral faces of the microbelts. The results offer useful insights into exploiting multidimensional micro-/nanolasers for integrated photonic circuits.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 21","pages":"31326–31333 31326–31333"},"PeriodicalIF":8.2000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c06284","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The modulation of cavity dimension is crucial for the realization of versatile micro-/nanolasers, yet the fabrication of molecular crystals is derived from the high-orientation assembly mode of molecules, limiting the optical cavity to a low-dimensional anisotropic topography with sharp corners and high thresholds. Here, we propose an innovative strategy to achieve the assembly orientation engineering of organic microcrystals for flexibly modulating cavity dimension. The isotropic and anisotropic assembly orientations generate different-dimensional microcavity structures (one-dimensional microbelts and three-dimensional (3D) microspheres) with distinct lasing actions. The 3D microspheres with perfect spherical morphology and strong light confinement capability function as low-threshold whispering gallery-mode microlasers. Moreover, the single-crystalline microbelts with smooth lateral sides act as Fabry–Pérot-mode lateral-cavity microlasers, which are formed between two lateral faces of the microbelts. The results offer useful insights into exploiting multidimensional micro-/nanolasers for integrated photonic circuits.

Abstract Image

调制腔尺寸的有机微晶激光器装配定向工程
谐振腔尺寸的调制是实现多用途微/纳米激光器的关键,但分子晶体的制造源于分子的高取向组装模式,将光学谐振腔限制在具有尖角和高阈值的低维各向异性地形上。在此,我们提出了一种创新的策略来实现有机微晶体的装配定向工程,以灵活地调制腔尺寸。各向同性和各向异性装配方向产生不同维度的微腔结构(一维微带和三维微球),具有不同的激光作用。三维微球具有完美的球形形态和强光约束能力,可作为低阈值低语走廊模式微激光器。此外,具有光滑侧面的单晶微带在微带的两个侧面之间形成了fabry - psamro -mode侧腔微激光器。该结果为开发用于集成光子电路的多维微/纳米激光器提供了有用的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信