Artificial Axon with Dendritic-like Plasticity by Biomimetic Interface Engineering of Anisotropic Two-Dimensional Tellurium

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiwei Chen, Changjian Zhou*, Yingjie Luo, Wenbo Li, Xiankai Lin, Chunlei Zhang, Siyu Liao, Ruolan Wen, Guitian Qiu, Qian Zhang, Jianxian Yi, Wenhan Lei, Lin Wang, Syed Rizwan, Pei Lin and Qijie Liang*, 
{"title":"Artificial Axon with Dendritic-like Plasticity by Biomimetic Interface Engineering of Anisotropic Two-Dimensional Tellurium","authors":"Jiwei Chen,&nbsp;Changjian Zhou*,&nbsp;Yingjie Luo,&nbsp;Wenbo Li,&nbsp;Xiankai Lin,&nbsp;Chunlei Zhang,&nbsp;Siyu Liao,&nbsp;Ruolan Wen,&nbsp;Guitian Qiu,&nbsp;Qian Zhang,&nbsp;Jianxian Yi,&nbsp;Wenhan Lei,&nbsp;Lin Wang,&nbsp;Syed Rizwan,&nbsp;Pei Lin and Qijie Liang*,&nbsp;","doi":"10.1021/acs.nanolett.5c0147810.1021/acs.nanolett.5c01478","DOIUrl":null,"url":null,"abstract":"<p >Spiking neural network (SNN) hardware relies on implicit assumptions that prioritize dendritic/synaptic learning above axon/synaptic concerns, compromising performances in signal capacity, accuracy, and compactness of SNN systems. Herein, we develop an artificial axon by utilizing the heterogeneity and interface state tunability in anisotropic two-dimensional (2D) tellurium (Te). By operating a multiterminal axon under the bioelectricity level, the device achieved neuron-like heterogeneous axon dynamics expansion (∼258%). An excellent dendritic-like tunability (∼197%) exhibits gain on the axons. The synergistic axon–dendrite optimization device exhibits 5-bit programmable conductance, signal filtering, and input enhancing. The accuracy of recognizing data sets based on the SNN algorithm demonstrates efficient optimization (5.2% higher accuracy) of networks by the device features, especially in the case of performing image preprocessing. This artificial neuron solution with anisotropic 2D materials utilizing biomimetic interface engineering provides a universal strategy for compact, high-precision parallel architecture of SNN hardware.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 21","pages":"8619–8627 8619–8627"},"PeriodicalIF":9.6000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c01478","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spiking neural network (SNN) hardware relies on implicit assumptions that prioritize dendritic/synaptic learning above axon/synaptic concerns, compromising performances in signal capacity, accuracy, and compactness of SNN systems. Herein, we develop an artificial axon by utilizing the heterogeneity and interface state tunability in anisotropic two-dimensional (2D) tellurium (Te). By operating a multiterminal axon under the bioelectricity level, the device achieved neuron-like heterogeneous axon dynamics expansion (∼258%). An excellent dendritic-like tunability (∼197%) exhibits gain on the axons. The synergistic axon–dendrite optimization device exhibits 5-bit programmable conductance, signal filtering, and input enhancing. The accuracy of recognizing data sets based on the SNN algorithm demonstrates efficient optimization (5.2% higher accuracy) of networks by the device features, especially in the case of performing image preprocessing. This artificial neuron solution with anisotropic 2D materials utilizing biomimetic interface engineering provides a universal strategy for compact, high-precision parallel architecture of SNN hardware.

基于各向异性二维碲仿生界面工程的树状可塑性人工轴突
尖峰神经网络(SNN)硬件依赖于隐式假设,即优先考虑树突/突触学习而不是轴突/突触学习,从而影响SNN系统在信号容量、准确性和紧凑性方面的性能。本文利用各向异性二维碲(Te)的非均质性和界面态可调性,开发了一种人工轴突。通过在生物电水平下操作一个多终端轴突,该装置实现了神经元样的异质轴突动力学扩展(~ 258%)。在轴突上表现出优异的树突样可调性(~ 197%)。协同轴突树突优化装置具有5位可编程电导,信号滤波和输入增强。基于SNN算法的识别数据集的准确率显示了设备特征对网络的有效优化(准确率提高5.2%),特别是在执行图像预处理的情况下。这种利用仿生界面工程的各向异性二维材料的人工神经元解决方案为SNN硬件的紧凑、高精度并行架构提供了一种通用策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信