Efficient Design of PtFeCoNiX Ordered High-Entropy Alloys as Multifunctional High-Performance Electrocatalysts

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tianyang Luan, Jiamin Zhao, Tongchang Gao, Fudi Wang, Hangchen Xu, Zeqi Song, Liuxiong Luo, Shen Gong, Bing Liu
{"title":"Efficient Design of PtFeCoNiX Ordered High-Entropy Alloys as Multifunctional High-Performance Electrocatalysts","authors":"Tianyang Luan, Jiamin Zhao, Tongchang Gao, Fudi Wang, Hangchen Xu, Zeqi Song, Liuxiong Luo, Shen Gong, Bing Liu","doi":"10.1002/adfm.202506851","DOIUrl":null,"url":null,"abstract":"Ordered high-entropy alloys (HEAs) catalysts integrate high activity, stability, and multifunctionality for broad applications. Doping elements can both reduce the kinetic energy barrier for the ordering process and adjust the crystal structure to control compressive strain of surface atoms, thereby modulating the d-band center to optimize the intrinsic activity and multifunctional catalytic properties of HEAs. This paper establishes a fundamental data-guided strategy for efficient screening of doping elements for HEAs, based on three core parameters: melting point, atomic radius, and electronegativity. Through which, Gallium (Ga) is rapidly identified as the optimal element X in the five-membered PtFeCoNiX HEA system. The Ga-doped alloy demonstrates a clear L1<sub>0</sub>-type ordered structure at 600 °C, whereas the PtFeCoNi alloy failed to achieve ordering transition under the same conditions. By precisely adjusting the Ga atomic ratio, multiple catalytic properties are optimized without compromising the L1<sub>0</sub> structure. Zinc-air battery devices offer significant improvements in all performance metrics. Density Function Theory (DFT) calculations reveal that Ga doping induced a downward shift of the d-band center, confirming the accuracy of the strategy.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"2 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202506851","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ordered high-entropy alloys (HEAs) catalysts integrate high activity, stability, and multifunctionality for broad applications. Doping elements can both reduce the kinetic energy barrier for the ordering process and adjust the crystal structure to control compressive strain of surface atoms, thereby modulating the d-band center to optimize the intrinsic activity and multifunctional catalytic properties of HEAs. This paper establishes a fundamental data-guided strategy for efficient screening of doping elements for HEAs, based on three core parameters: melting point, atomic radius, and electronegativity. Through which, Gallium (Ga) is rapidly identified as the optimal element X in the five-membered PtFeCoNiX HEA system. The Ga-doped alloy demonstrates a clear L10-type ordered structure at 600 °C, whereas the PtFeCoNi alloy failed to achieve ordering transition under the same conditions. By precisely adjusting the Ga atomic ratio, multiple catalytic properties are optimized without compromising the L10 structure. Zinc-air battery devices offer significant improvements in all performance metrics. Density Function Theory (DFT) calculations reveal that Ga doping induced a downward shift of the d-band center, confirming the accuracy of the strategy.

Abstract Image

PtFeCoNiX有序高熵合金多功能高性能电催化剂的高效设计
有序高熵合金(HEAs)催化剂具有高活性、稳定性和多功能性,具有广泛的应用前景。掺杂元素既可以降低有序过程的动能势垒,又可以调节晶体结构,控制表面原子的压缩应变,从而调节d带中心,优化HEAs的本征活性和多功能催化性能。本文建立了基于熔点、原子半径和电负性三个核心参数的高效筛选HEAs掺杂元素的基本数据指导策略。通过该方法,镓(Ga)被快速确定为五元PtFeCoNiX HEA体系中的最佳元素X。ga掺杂合金在600℃时表现出明显的l10型有序结构,而PtFeCoNi合金在相同条件下未能实现有序转变。通过精确调整Ga原子比,在不影响L10结构的情况下优化了多种催化性能。锌空气电池设备在所有性能指标上都有显著的改进。密度泛函理论(DFT)计算表明,Ga掺杂导致d带中心向下移动,证实了该策略的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信