Fourier-Tailored Light–Matter Coupling in van der Waals Heterostructures

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-05-27 DOI:10.1021/acsnano.5c02025
Dorte Rubæk Danielsen, Nolan Lassaline, Sander Jæger Linde, Magnus Vejby Nielsen, Xavier Zambrana-Puyalto, Avishek Sarbajna, Duc Hieu Nguyen, Timothy J. Booth, Nicolas Leitherer-Stenger, Søren Raza
{"title":"Fourier-Tailored Light–Matter Coupling in van der Waals Heterostructures","authors":"Dorte Rubæk Danielsen, Nolan Lassaline, Sander Jæger Linde, Magnus Vejby Nielsen, Xavier Zambrana-Puyalto, Avishek Sarbajna, Duc Hieu Nguyen, Timothy J. Booth, Nicolas Leitherer-Stenger, Søren Raza","doi":"10.1021/acsnano.5c02025","DOIUrl":null,"url":null,"abstract":"Dielectric structures can support low-absorption optical modes, which are attractive for engineering light–matter interactions with excitonic resonances in two-dimensional (2D) materials. However, the coupling strength is often limited by the electromagnetic field being confined inside the dielectric, reducing the spatial overlap with the active excitonic material. Here, we demonstrate a scheme for enhanced light–matter coupling by embedding excitonic tungsten disulfide (WS<sub>2</sub>) within dielectric hexagonal boron nitride (hBN), forming a van der Waals (vdW) heterostructure that optimizes the field overlap and alignment between excitons and optical waveguide modes. To tailor diffractive coupling between free-space light and the waveguide modes in the vdW heterostructure, we fabricate Fourier surfaces in the top hBN layer by using thermal scanning-probe lithography and etching, producing sinusoidal topographic landscapes with nanometer precision. We observe the formation of exciton-polaritons with a Rabi splitting indicating that the system is at the onset of strong coupling. These results demonstrate the potential of Fourier-tailored vdW heterostructures for exploring advanced optoelectronic and quantum devices.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"16 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c02025","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dielectric structures can support low-absorption optical modes, which are attractive for engineering light–matter interactions with excitonic resonances in two-dimensional (2D) materials. However, the coupling strength is often limited by the electromagnetic field being confined inside the dielectric, reducing the spatial overlap with the active excitonic material. Here, we demonstrate a scheme for enhanced light–matter coupling by embedding excitonic tungsten disulfide (WS2) within dielectric hexagonal boron nitride (hBN), forming a van der Waals (vdW) heterostructure that optimizes the field overlap and alignment between excitons and optical waveguide modes. To tailor diffractive coupling between free-space light and the waveguide modes in the vdW heterostructure, we fabricate Fourier surfaces in the top hBN layer by using thermal scanning-probe lithography and etching, producing sinusoidal topographic landscapes with nanometer precision. We observe the formation of exciton-polaritons with a Rabi splitting indicating that the system is at the onset of strong coupling. These results demonstrate the potential of Fourier-tailored vdW heterostructures for exploring advanced optoelectronic and quantum devices.

Abstract Image

范德华异质结构中的傅立叶裁剪光-物质耦合
介电结构可以支持低吸收光学模式,这对于在二维(2D)材料中与激子共振的工程光物质相互作用是有吸引力的。然而,耦合强度往往受限于电磁场被限制在电介质内部,减少了与活性激子材料的空间重叠。在这里,我们展示了一种通过在介电六方氮化硼(hBN)中嵌入激子二硫化钨(WS2)来增强光物质耦合的方案,形成范德华(vdW)异质结构,优化了激子和光波导模式之间的场重叠和对齐。为了适应vdW异质结构中自由空间光和波导模式之间的衍射耦合,我们使用热扫描探针光刻和蚀刻技术在顶部hBN层制作傅里叶表面,产生具有纳米精度的正弦地形景观。我们观察到激子极化子的形成与拉比分裂表明系统处于强耦合的开始。这些结果证明了傅里叶定制vdW异质结构在探索先进光电和量子器件方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信