Xiao-Yang Liu,You-Liang Zhu,Yu-Ze Jiang,Shao-Kang Shi,Li Zhao,Zhong-Yuan Lu
{"title":"IPAMD: A Plugin-Based Software for Biomolecular Condensate Simulations.","authors":"Xiao-Yang Liu,You-Liang Zhu,Yu-Ze Jiang,Shao-Kang Shi,Li Zhao,Zhong-Yuan Lu","doi":"10.1021/acs.jctc.5c00147","DOIUrl":null,"url":null,"abstract":"The study of intrinsically disordered proteins (IDPs) and their role in biomolecular condensate formation has become a critical area of research, offering insights into fundamental biological processes and therapeutic development. Here, we present IPAMD (Intrinsically disordered Protein Aggregation Molecular Dynamics), a plugin-based software designed to simulate the formation dynamics of biomolecular condensates of IDPs. IPAMD provides a modular, efficient, and customizable simulation platform specifically designed for biomolecular condensate studies. It incorporates advanced force fields, such as HPS-based and Mpipi models, and employs optimization techniques for large-scale simulations. The software features a user-friendly interface and supports batch processing, making it accessible to researchers with varying computational expertise. Benchmarking and case studies demonstrate the ability of IPAMD to accurately simulate and analyze condensate structures and properties.","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"18 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00147","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The study of intrinsically disordered proteins (IDPs) and their role in biomolecular condensate formation has become a critical area of research, offering insights into fundamental biological processes and therapeutic development. Here, we present IPAMD (Intrinsically disordered Protein Aggregation Molecular Dynamics), a plugin-based software designed to simulate the formation dynamics of biomolecular condensates of IDPs. IPAMD provides a modular, efficient, and customizable simulation platform specifically designed for biomolecular condensate studies. It incorporates advanced force fields, such as HPS-based and Mpipi models, and employs optimization techniques for large-scale simulations. The software features a user-friendly interface and supports batch processing, making it accessible to researchers with varying computational expertise. Benchmarking and case studies demonstrate the ability of IPAMD to accurately simulate and analyze condensate structures and properties.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.