{"title":"Assessing Long-Term Effects of Tea (Camellia sinensis) Cultivation on Soil Quality in Highland Agroecosystems: A Case Study in Lam Dong, Vietnam","authors":"Tao Anh Khoi","doi":"10.5194/egusphere-2025-2048","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Long-term monoculture systems such as tea (Camellia sinensis) plantations can lead to significant changes in soil quality, directly influencing crop productivity and sustainability. This study investigates the impacts of tea cultivation over a 20-year period on key soil quality indicators in Lam Dong province, Vietnam—a major highland tea-growing region. Soils were sampled from plantations of varying ages (5, 10, and 20 years) and compared with native forest soils. Chemical, physical, and biological properties were assessed, including soil organic carbon (SOC), nutrient availability (N, P, K, S), pH, bulk density, plant-available water capacity (PAWC), aggregate stability, and earthworm populations. Results show a significant decline in SOC, available P and K, and PAWC with increasing plantation age, while bulk density and mechanical resistance increased, indicating progressive soil compaction. A multiple regression analysis revealed that SOC, available P, total K, and PAWC were the most predictive indicators of long-term tea productivity. Economic analysis suggests that tea cultivation remains marginally profitable after 20 years, provided that adequate fertilization is maintained. This study proposes critical threshold levels for soil quality indicators to support sustainable tea production in tropical highland systems.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"43 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/egusphere-2025-2048","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Long-term monoculture systems such as tea (Camellia sinensis) plantations can lead to significant changes in soil quality, directly influencing crop productivity and sustainability. This study investigates the impacts of tea cultivation over a 20-year period on key soil quality indicators in Lam Dong province, Vietnam—a major highland tea-growing region. Soils were sampled from plantations of varying ages (5, 10, and 20 years) and compared with native forest soils. Chemical, physical, and biological properties were assessed, including soil organic carbon (SOC), nutrient availability (N, P, K, S), pH, bulk density, plant-available water capacity (PAWC), aggregate stability, and earthworm populations. Results show a significant decline in SOC, available P and K, and PAWC with increasing plantation age, while bulk density and mechanical resistance increased, indicating progressive soil compaction. A multiple regression analysis revealed that SOC, available P, total K, and PAWC were the most predictive indicators of long-term tea productivity. Economic analysis suggests that tea cultivation remains marginally profitable after 20 years, provided that adequate fertilization is maintained. This study proposes critical threshold levels for soil quality indicators to support sustainable tea production in tropical highland systems.
SoilAgricultural and Biological Sciences-Soil Science
CiteScore
10.80
自引率
2.90%
发文量
44
审稿时长
30 weeks
期刊介绍:
SOIL is an international scientific journal dedicated to the publication and discussion of high-quality research in the field of soil system sciences.
SOIL is at the interface between the atmosphere, lithosphere, hydrosphere, and biosphere. SOIL publishes scientific research that contributes to understanding the soil system and its interaction with humans and the entire Earth system. The scope of the journal includes all topics that fall within the study of soil science as a discipline, with an emphasis on studies that integrate soil science with other sciences (hydrology, agronomy, socio-economics, health sciences, atmospheric sciences, etc.).