Lung auscultation - today and tomorrow- a narrative review.

Anna Moberg, Össur Ingi Emilsson, Sif Hansdottir, Tryggvi Asmundsson, Andrei Malinovschi, Hasse Melbye, Dora Ludviksdottir
{"title":"Lung auscultation - today and tomorrow- a narrative review.","authors":"Anna Moberg, Össur Ingi Emilsson, Sif Hansdottir, Tryggvi Asmundsson, Andrei Malinovschi, Hasse Melbye, Dora Ludviksdottir","doi":"10.1080/17476348.2025.2511223","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Lung auscultation is a fundamental diagnostic tool for respiratory conditions. Despite advancements in medical technology, the analogue stethoscope remains a crucial tool for diagnosing pulmonary diseases. However, traditional auscultation methods have limitations, including variability in sound interpretation and examiner dependency.</p><p><strong>Areas covered: </strong>This review explores the current standards of lung auscultation, highlighting the challenges and limitations of traditional methods. Further, it examines the potential of digital stethoscopes and artificial intelligence (AI) in enhancing the accuracy and reliability of lung sound analysis. A broad and iterative exploration of the literature was conducted, mainly using PubMed, Scopus, and Google Scholar.</p><p><strong>Expert opinion: </strong>The advent of digital stethoscopes and AI presents a potential for more standardized lung auscultation. Although challenging, these technologies can standardize sound categorization, improve diagnostic accuracy, and facilitate remote consultations. There will be a need for large data sets with high quality sound files and outcome measures, and noise during recording needs to be handled. The integration of digital lung auscultation with telemedicine platforms could significantly improve patient monitoring and care, particularly for those with chronic respiratory conditions.</p>","PeriodicalId":94007,"journal":{"name":"Expert review of respiratory medicine","volume":" ","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert review of respiratory medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17476348.2025.2511223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Lung auscultation is a fundamental diagnostic tool for respiratory conditions. Despite advancements in medical technology, the analogue stethoscope remains a crucial tool for diagnosing pulmonary diseases. However, traditional auscultation methods have limitations, including variability in sound interpretation and examiner dependency.

Areas covered: This review explores the current standards of lung auscultation, highlighting the challenges and limitations of traditional methods. Further, it examines the potential of digital stethoscopes and artificial intelligence (AI) in enhancing the accuracy and reliability of lung sound analysis. A broad and iterative exploration of the literature was conducted, mainly using PubMed, Scopus, and Google Scholar.

Expert opinion: The advent of digital stethoscopes and AI presents a potential for more standardized lung auscultation. Although challenging, these technologies can standardize sound categorization, improve diagnostic accuracy, and facilitate remote consultations. There will be a need for large data sets with high quality sound files and outcome measures, and noise during recording needs to be handled. The integration of digital lung auscultation with telemedicine platforms could significantly improve patient monitoring and care, particularly for those with chronic respiratory conditions.

肺听诊-今天和明天-叙述回顾。
肺听诊是呼吸系统疾病的基本诊断工具。尽管医疗技术进步,模拟听诊器仍然是诊断肺部疾病的重要工具。然而,传统的听诊方法有局限性,包括声音解释的可变性和听诊者的依赖性。涵盖领域:本综述探讨了当前的肺听诊标准,强调了传统方法的挑战和局限性。此外,它还探讨了数字听诊器和人工智能(AI)在提高肺音分析的准确性和可靠性方面的潜力。主要使用PubMed、Scopus和谷歌Scholar对文献进行了广泛而反复的检索。专家意见:数字听诊器和人工智能的出现为更标准化的肺部听诊提供了可能。尽管具有挑战性,但这些技术可以标准化声音分类,提高诊断准确性,并促进远程咨询。将需要具有高质量声音文件和结果测量的大型数据集,并且需要处理记录过程中的噪声。数字化肺听诊与远程医疗平台的整合可以显著改善患者的监测和护理,特别是对慢性呼吸系统疾病患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信