Sheikh Junaid Fayaz, Néstor Montiel-Bohórquez, Shashank Bishnoi, Matteo Romano, Manuele Gatti, N M Anoop Krishnan
{"title":"Industrial-scale prediction of cement clinker phases using machine learning.","authors":"Sheikh Junaid Fayaz, Néstor Montiel-Bohórquez, Shashank Bishnoi, Matteo Romano, Manuele Gatti, N M Anoop Krishnan","doi":"10.1038/s44172-025-00432-3","DOIUrl":null,"url":null,"abstract":"<p><p>Cement production exceeds 4.1 billion tonnes annually, emitting 2.4 billion tonnes of CO<sub>2</sub> annually, necessitating improved process control. Traditional models, limited to steady-state conditions, lack predictive accuracy for clinker mineralogical phases. Here, using a comprehensive two-year industrial dataset, we develop machine learning models that outperform conventional Bogue equations with mean absolute percentage errors of 1.24%, 6.77%, and 2.53% for alite, belite, and ferrite prediction respectively, compared to 7.79%, 22.68%, and 24.54% for Bogue calculations. Our models remain robust under varying operations and are evaluated for uncertainty and rare-event scenarios. Through post hoc explainable algorithms, we interpret the hierarchical relationships between clinker oxides and phase formation, providing insights into the functioning of an otherwise black-box model. The framework can potentially enable real-time optimization of cement production, thereby providing a route toward reducing material waste and ensuring quality while reducing the associated emissions under real-world conditions.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"94"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12103584/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00432-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cement production exceeds 4.1 billion tonnes annually, emitting 2.4 billion tonnes of CO2 annually, necessitating improved process control. Traditional models, limited to steady-state conditions, lack predictive accuracy for clinker mineralogical phases. Here, using a comprehensive two-year industrial dataset, we develop machine learning models that outperform conventional Bogue equations with mean absolute percentage errors of 1.24%, 6.77%, and 2.53% for alite, belite, and ferrite prediction respectively, compared to 7.79%, 22.68%, and 24.54% for Bogue calculations. Our models remain robust under varying operations and are evaluated for uncertainty and rare-event scenarios. Through post hoc explainable algorithms, we interpret the hierarchical relationships between clinker oxides and phase formation, providing insights into the functioning of an otherwise black-box model. The framework can potentially enable real-time optimization of cement production, thereby providing a route toward reducing material waste and ensuring quality while reducing the associated emissions under real-world conditions.