Industrial-scale prediction of cement clinker phases using machine learning.

Sheikh Junaid Fayaz, Néstor Montiel-Bohórquez, Shashank Bishnoi, Matteo Romano, Manuele Gatti, N M Anoop Krishnan
{"title":"Industrial-scale prediction of cement clinker phases using machine learning.","authors":"Sheikh Junaid Fayaz, Néstor Montiel-Bohórquez, Shashank Bishnoi, Matteo Romano, Manuele Gatti, N M Anoop Krishnan","doi":"10.1038/s44172-025-00432-3","DOIUrl":null,"url":null,"abstract":"<p><p>Cement production exceeds 4.1 billion tonnes annually, emitting 2.4 billion tonnes of CO<sub>2</sub> annually, necessitating improved process control. Traditional models, limited to steady-state conditions, lack predictive accuracy for clinker mineralogical phases. Here, using a comprehensive two-year industrial dataset, we develop machine learning models that outperform conventional Bogue equations with mean absolute percentage errors of 1.24%, 6.77%, and 2.53% for alite, belite, and ferrite prediction respectively, compared to 7.79%, 22.68%, and 24.54% for Bogue calculations. Our models remain robust under varying operations and are evaluated for uncertainty and rare-event scenarios. Through post hoc explainable algorithms, we interpret the hierarchical relationships between clinker oxides and phase formation, providing insights into the functioning of an otherwise black-box model. The framework can potentially enable real-time optimization of cement production, thereby providing a route toward reducing material waste and ensuring quality while reducing the associated emissions under real-world conditions.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"94"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12103584/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00432-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cement production exceeds 4.1 billion tonnes annually, emitting 2.4 billion tonnes of CO2 annually, necessitating improved process control. Traditional models, limited to steady-state conditions, lack predictive accuracy for clinker mineralogical phases. Here, using a comprehensive two-year industrial dataset, we develop machine learning models that outperform conventional Bogue equations with mean absolute percentage errors of 1.24%, 6.77%, and 2.53% for alite, belite, and ferrite prediction respectively, compared to 7.79%, 22.68%, and 24.54% for Bogue calculations. Our models remain robust under varying operations and are evaluated for uncertainty and rare-event scenarios. Through post hoc explainable algorithms, we interpret the hierarchical relationships between clinker oxides and phase formation, providing insights into the functioning of an otherwise black-box model. The framework can potentially enable real-time optimization of cement production, thereby providing a route toward reducing material waste and ensuring quality while reducing the associated emissions under real-world conditions.

利用机器学习对水泥熟料相进行工业规模预测。
水泥年产量超过41亿吨,每年排放24亿吨二氧化碳,需要改进工艺控制。传统的模型,仅限于稳态条件下,缺乏预测熟料矿物学相的准确性。在这里,使用一个全面的两年工业数据集,我们开发的机器学习模型优于传统的Bogue方程,alite, belite和ferrite预测的平均绝对百分比误差分别为1.24%,6.77%和2.53%,而Bogue计算的平均绝对百分比误差分别为7.79%,22.68%和24.54%。我们的模型在不同的操作下保持稳健,并针对不确定性和罕见事件情景进行评估。通过事后可解释的算法,我们解释了熟料氧化物和相形成之间的层次关系,为其他黑箱模型的功能提供了见解。该框架可以实现水泥生产的实时优化,从而提供减少材料浪费和确保质量的途径,同时减少实际条件下的相关排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信