{"title":"Microbiota dysbiosis impact on the immune system dysregulation in Huntington's disease (HD).","authors":"Papia Acharjee, Shambhu Kumar Prasad, Vishal Vikram Singh, Mukulika Ray, Arup Acharjee","doi":"10.1016/bs.irn.2025.04.002","DOIUrl":null,"url":null,"abstract":"<p><p>Huntington's disease (HD) is a neurodegenerative disorder characterized by motor, cognitive, and psychiatric impairments caused by Huntingtin (HTT) gene mutations, resulting in the mutant huntingtin (mHTT) protein. Both innate and adaptive immunities play crucial roles in the pathogenesis of HD. In this chapter, we explore the vital role of the gut microbiota in HD, emphasizing its impact on the immune response and brain health via the gut-brain axis. Dysbiosis influences immune responses and HD pathogenesis through microbial metabolites such as short-chain fatty acids (SCFAs) and pathogen-associated molecular patterns (PAMPs). We discuss advanced mathematical models, telemedicine, and biosensors for tracking HD progression and detecting gut dysbiosis. Nutritional interventions to restore microbiota balance and using artificial intelligence and machine learning to predict disease prognosis and personalized treatments have been highlighted. Based on their unique immune profiles and gut microbiota, personalized medicine has been proposed as a promising strategy for effective HD treatment.</p>","PeriodicalId":94058,"journal":{"name":"International review of neurobiology","volume":"180 ","pages":"57-94"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International review of neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.irn.2025.04.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Huntington's disease (HD) is a neurodegenerative disorder characterized by motor, cognitive, and psychiatric impairments caused by Huntingtin (HTT) gene mutations, resulting in the mutant huntingtin (mHTT) protein. Both innate and adaptive immunities play crucial roles in the pathogenesis of HD. In this chapter, we explore the vital role of the gut microbiota in HD, emphasizing its impact on the immune response and brain health via the gut-brain axis. Dysbiosis influences immune responses and HD pathogenesis through microbial metabolites such as short-chain fatty acids (SCFAs) and pathogen-associated molecular patterns (PAMPs). We discuss advanced mathematical models, telemedicine, and biosensors for tracking HD progression and detecting gut dysbiosis. Nutritional interventions to restore microbiota balance and using artificial intelligence and machine learning to predict disease prognosis and personalized treatments have been highlighted. Based on their unique immune profiles and gut microbiota, personalized medicine has been proposed as a promising strategy for effective HD treatment.