Kangjing Liu, Xueying Tian, Siyuan Fei, Yukun Song, A M Abd El-Aty, Mingqian Tan
{"title":"Macrophage and mitochondrion dual-targeting astaxanthin nanoparticles prepared by Maillard reaction for colonic inflammation alleviation.","authors":"Kangjing Liu, Xueying Tian, Siyuan Fei, Yukun Song, A M Abd El-Aty, Mingqian Tan","doi":"10.1007/s42995-024-00255-9","DOIUrl":null,"url":null,"abstract":"<p><p>This study demonstrated the design of whey protein isolate (WPI)-mannose (Man) conjugates with triphenylphosphonium bromide (TPP) through self-assembly to prepare macrophage and mitochondrion dual-targeting astaxanthin (AXT) nanoparticles (AXT@TPP-WPI-Man). The nanoparticles displayed spherical structures with a well-dispersed size of approximately 206.1 ± 39.2 nm, with good biocompatibility, stability, and targeting capabilities. In vitro experiments demonstrated the specific accumulation of AXT@TPP-WPI-Man in mitochondria and exhibited good targeting ability toward macrophages. The AXT@TPP-WPI-Man effectively reduced reactive oxygen species and preserved the normal mitochondrial membrane potential. The AXT@TPP-WPI-Man treated ulcerative colitis mice exhibited a 52.32% increase in colon length with significant improvement in weight loss, disease activity index scores, and reduced release of inflammatory cytokines. Immunofluorescence staining indicated AXT@TPP-WPI-Man alleviated ulcerative colitis by reducing M1 polarization in colonic macrophages while promoting M2 polarization. The dual-targeting AXT@TPP-WPI-Man has the potential to improve astaxanthin bioavailability, presenting a promising delivery method for the treatment of ulcerative colitis.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-024-00255-9.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"7 2","pages":"352-365"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102426/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Life Science & Technology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42995-024-00255-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study demonstrated the design of whey protein isolate (WPI)-mannose (Man) conjugates with triphenylphosphonium bromide (TPP) through self-assembly to prepare macrophage and mitochondrion dual-targeting astaxanthin (AXT) nanoparticles (AXT@TPP-WPI-Man). The nanoparticles displayed spherical structures with a well-dispersed size of approximately 206.1 ± 39.2 nm, with good biocompatibility, stability, and targeting capabilities. In vitro experiments demonstrated the specific accumulation of AXT@TPP-WPI-Man in mitochondria and exhibited good targeting ability toward macrophages. The AXT@TPP-WPI-Man effectively reduced reactive oxygen species and preserved the normal mitochondrial membrane potential. The AXT@TPP-WPI-Man treated ulcerative colitis mice exhibited a 52.32% increase in colon length with significant improvement in weight loss, disease activity index scores, and reduced release of inflammatory cytokines. Immunofluorescence staining indicated AXT@TPP-WPI-Man alleviated ulcerative colitis by reducing M1 polarization in colonic macrophages while promoting M2 polarization. The dual-targeting AXT@TPP-WPI-Man has the potential to improve astaxanthin bioavailability, presenting a promising delivery method for the treatment of ulcerative colitis.
Supplementary information: The online version contains supplementary material available at 10.1007/s42995-024-00255-9.
期刊介绍:
Marine Life Science & Technology (MLST), established in 2019, is dedicated to publishing original research papers that unveil new discoveries and theories spanning a wide spectrum of life sciences and technologies. This includes fundamental biology, fisheries science and technology, medicinal bioresources, food science, biotechnology, ecology, and environmental biology, with a particular focus on marine habitats.
The journal is committed to nurturing synergistic interactions among these diverse disciplines, striving to advance multidisciplinary approaches within the scientific field. It caters to a readership comprising biological scientists, aquaculture researchers, marine technologists, biological oceanographers, and ecologists.