{"title":"A path signature perspective of process data feature extraction","authors":"Xueying Tang, Jingchen Liu, Zhiliang Ying","doi":"10.1111/bmsp.12390","DOIUrl":null,"url":null,"abstract":"<p>Computer-based interactive items have become prevalent in recent educational assessments. In such items, the entire human-computer interactive process is recorded in a log file and is known as the response process. These data are noisy, diverse, and in a nonstandard format. Several feature extraction methods have been developed to overcome the difficulties in process data analysis. However, these methods often focus on the action sequence and ignore the time sequence in response processes. In this paper, we introduce a new feature extraction method that incorporates the information in both the action sequence and the response time sequence. The method is based on the concept of path signature from stochastic analysis. We apply the proposed method to both simulated data and real response process data from PIAAC. A prediction framework is used to show that taking time information into account provides a more comprehensive understanding of respondents' behaviors.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":"78 3","pages":"939-964"},"PeriodicalIF":1.8000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://bpspsychub.onlinelibrary.wiley.com/doi/10.1111/bmsp.12390","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Computer-based interactive items have become prevalent in recent educational assessments. In such items, the entire human-computer interactive process is recorded in a log file and is known as the response process. These data are noisy, diverse, and in a nonstandard format. Several feature extraction methods have been developed to overcome the difficulties in process data analysis. However, these methods often focus on the action sequence and ignore the time sequence in response processes. In this paper, we introduce a new feature extraction method that incorporates the information in both the action sequence and the response time sequence. The method is based on the concept of path signature from stochastic analysis. We apply the proposed method to both simulated data and real response process data from PIAAC. A prediction framework is used to show that taking time information into account provides a more comprehensive understanding of respondents' behaviors.
期刊介绍:
The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including:
• mathematical psychology
• statistics
• psychometrics
• decision making
• psychophysics
• classification
• relevant areas of mathematics, computing and computer software
These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.