First nomogram for predicting interstitial lung disease and pulmonary arterial hypertension in SLE: a machine learning approach.

IF 5.8 2区 医学 Q1 Medicine
Qian Niu, Qian Li, Shuaijun Chen, Lingyan Xiao, Jing Luo, Meng Wang, Linjie Song
{"title":"First nomogram for predicting interstitial lung disease and pulmonary arterial hypertension in SLE: a machine learning approach.","authors":"Qian Niu, Qian Li, Shuaijun Chen, Lingyan Xiao, Jing Luo, Meng Wang, Linjie Song","doi":"10.1186/s12931-025-03273-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Interstitial lung disease (ILD) and pulmonary arterial hypertension (PAH) are severe, life-threatening complications of systemic lupus erythematosus (SLE). Early identification of high-risk patients remains challenging due to the lack of validated predictive tools. We aimed to develop and validate the first machine learning-based nomogram integrating routine clinical indicators to predict SLE-ILD-PAH risk.</p><p><strong>Methods: </strong>Using a retrospective cohort design, we analyzed 338 SLE patients (2007-2019), including 193 with ILD-PAH and 145 controls. Univariable and multivariable logistic regression identified independent predictors, followed by nomogram construction and random forest modeling. Model performance was assessed via calibration curves and decision curve analysis (DCA).</p><p><strong>Results: </strong>Age, C-reactive protein (CRP), anti-dsDNA, pericarditis, and SLE Disease Activity Index (SLEDAI) were independently associated with the prevalence of ILD-PAH in SLE patients. The 5 variables were selected to construct the nomogram model. Calibration curves and decision curve analysis indicated the clinical utility of the nomogram. Receiver operating characteristics (ROC) curves analysis demonstrated excellent discrimination (AUC = 0.871, 95% CI: 0.833-0.910). Forest plot analysis further confirmed the diagnostic weight of each variable.</p><p><strong>Conclusions: </strong>We developed the first nomogram incorporating age, CRP, anti-dsDNA, pericarditis, and SLEDAI to predict SLE-ILD-PAH risk. This machine learning-enhanced tool leverages routine clinical data, enabling early risk stratification and personalized monitoring. Future studies should validate its utility in guiding therapies and improving outcomes.</p>","PeriodicalId":49131,"journal":{"name":"Respiratory Research","volume":"26 1","pages":"197"},"PeriodicalIF":5.8000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102848/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12931-025-03273-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Interstitial lung disease (ILD) and pulmonary arterial hypertension (PAH) are severe, life-threatening complications of systemic lupus erythematosus (SLE). Early identification of high-risk patients remains challenging due to the lack of validated predictive tools. We aimed to develop and validate the first machine learning-based nomogram integrating routine clinical indicators to predict SLE-ILD-PAH risk.

Methods: Using a retrospective cohort design, we analyzed 338 SLE patients (2007-2019), including 193 with ILD-PAH and 145 controls. Univariable and multivariable logistic regression identified independent predictors, followed by nomogram construction and random forest modeling. Model performance was assessed via calibration curves and decision curve analysis (DCA).

Results: Age, C-reactive protein (CRP), anti-dsDNA, pericarditis, and SLE Disease Activity Index (SLEDAI) were independently associated with the prevalence of ILD-PAH in SLE patients. The 5 variables were selected to construct the nomogram model. Calibration curves and decision curve analysis indicated the clinical utility of the nomogram. Receiver operating characteristics (ROC) curves analysis demonstrated excellent discrimination (AUC = 0.871, 95% CI: 0.833-0.910). Forest plot analysis further confirmed the diagnostic weight of each variable.

Conclusions: We developed the first nomogram incorporating age, CRP, anti-dsDNA, pericarditis, and SLEDAI to predict SLE-ILD-PAH risk. This machine learning-enhanced tool leverages routine clinical data, enabling early risk stratification and personalized monitoring. Future studies should validate its utility in guiding therapies and improving outcomes.

预测SLE间质性肺病和肺动脉高压的首个nomogram:一种机器学习方法。
背景:间质性肺疾病(ILD)和肺动脉高压(PAH)是系统性红斑狼疮(SLE)严重的、危及生命的并发症。由于缺乏有效的预测工具,早期识别高危患者仍然具有挑战性。我们的目标是开发和验证第一个基于机器学习的nomogram整合常规临床指标来预测SLE-ILD-PAH的风险。方法:采用回顾性队列设计,分析了338例SLE患者(2007-2019),其中包括193例ILD-PAH患者和145例对照组。单变量和多变量逻辑回归确定独立预测因子,然后进行nomogram construction和random forest modeling。通过校正曲线和决策曲线分析(DCA)评估模型的性能。结果:年龄、c反应蛋白(CRP)、抗dsdna、心包炎和SLE疾病活动指数(SLEDAI)与SLE患者ILD-PAH患病率独立相关。选取这5个变量构建nomogram模型。校正曲线和决策曲线分析表明了nomogram的临床应用价值。受试者工作特征(ROC)曲线分析具有良好的鉴别能力(AUC = 0.871, 95% CI: 0.833-0.910)。森林样地分析进一步确定了各变量的诊断权重。结论:我们开发了第一个结合年龄、CRP、抗dsdna、心包炎和SLEDAI的nomogram来预测slel - ild - pah的风险。这种机器学习增强的工具利用常规临床数据,实现早期风险分层和个性化监测。未来的研究应验证其在指导治疗和改善结果方面的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Respiratory Research
Respiratory Research RESPIRATORY SYSTEM-
CiteScore
9.70
自引率
1.70%
发文量
314
审稿时长
4-8 weeks
期刊介绍: Respiratory Research publishes high-quality clinical and basic research, review and commentary articles on all aspects of respiratory medicine and related diseases. As the leading fully open access journal in the field, Respiratory Research provides an essential resource for pulmonologists, allergists, immunologists and other physicians, researchers, healthcare workers and medical students with worldwide dissemination of articles resulting in high visibility and generating international discussion. Topics of specific interest include asthma, chronic obstructive pulmonary disease, cystic fibrosis, genetics, infectious diseases, interstitial lung diseases, lung development, lung tumors, occupational and environmental factors, pulmonary circulation, pulmonary pharmacology and therapeutics, respiratory immunology, respiratory physiology, and sleep-related respiratory problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信