George Xie, Sho Okuda, Jing-Yan Gao, Timothy Wu, Jessica Jeong, Kun Ping Lu, Xiao Zhen Zhou
{"title":"The Central Role of Pin1 in Age-Related Cancer Signaling Pathways.","authors":"George Xie, Sho Okuda, Jing-Yan Gao, Timothy Wu, Jessica Jeong, Kun Ping Lu, Xiao Zhen Zhou","doi":"10.1016/j.semcancer.2025.05.011","DOIUrl":null,"url":null,"abstract":"<p><p>The prolyl-isomerase Pin1 is a unique enzyme that catalyzes cis-trans isomerization of phosphorylated Ser/Thr-Pro motifs. These motifs are present in many proteins, where isomerization of the typically rigid prolyl-peptide bond can lead to conformational changes, and subsequently regulate activity, stability, or localization. The specificity of Pin1 for phosphorylated motifs allows it to serve as a master regulator of proteins after phosphorylation, adding an additional layer of regulation to intricately control cellular signaling. As such, Pin1 plays an expansive role in numerous cancer and age-related signaling pathways, and is recognized as a major driver of cancer and promising therapeutic target. In this review, we discuss the role of Pin1 in regulation of age-related cancer signaling pathways, and we highlight the early development and current landscape of Pin1 inhibitors, and the prospect of Pin1 inhibition for cancer therapy.</p>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in cancer biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.semcancer.2025.05.011","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The prolyl-isomerase Pin1 is a unique enzyme that catalyzes cis-trans isomerization of phosphorylated Ser/Thr-Pro motifs. These motifs are present in many proteins, where isomerization of the typically rigid prolyl-peptide bond can lead to conformational changes, and subsequently regulate activity, stability, or localization. The specificity of Pin1 for phosphorylated motifs allows it to serve as a master regulator of proteins after phosphorylation, adding an additional layer of regulation to intricately control cellular signaling. As such, Pin1 plays an expansive role in numerous cancer and age-related signaling pathways, and is recognized as a major driver of cancer and promising therapeutic target. In this review, we discuss the role of Pin1 in regulation of age-related cancer signaling pathways, and we highlight the early development and current landscape of Pin1 inhibitors, and the prospect of Pin1 inhibition for cancer therapy.
期刊介绍:
Seminars in Cancer Biology (YSCBI) is a specialized review journal that focuses on the field of molecular oncology. Its primary objective is to keep scientists up-to-date with the latest developments in this field.
The journal adopts a thematic approach, dedicating each issue to an important topic of interest to cancer biologists. These topics cover a range of research areas, including the underlying genetic and molecular causes of cellular transformation and cancer, as well as the molecular basis of potential therapies.
To ensure the highest quality and expertise, every issue is supervised by a guest editor or editors who are internationally recognized experts in the respective field. Each issue features approximately eight to twelve authoritative invited reviews that cover various aspects of the chosen subject area.
The ultimate goal of each issue of YSCBI is to offer a cohesive, easily comprehensible, and engaging overview of the selected topic. The journal strives to provide scientists with a coordinated and lively examination of the latest developments in the field of molecular oncology.