Gait analysis for Parkinson's disease using multiscale entropy.

IF 2.3 Q3 CLINICAL NEUROLOGY
Leianne Rose V Amisola, Ralph Joaquimn B Acosta, Hail Mariella D Arao-Arao, Vianca Nicole C Benitez, Ron Marrion T Chan, Anna Katrina G Co, Nicole Shandy F Cortez, Pj Brian F Galina, Michael Christian A Virata
{"title":"Gait analysis for Parkinson's disease using multiscale entropy.","authors":"Leianne Rose V Amisola, Ralph Joaquimn B Acosta, Hail Mariella D Arao-Arao, Vianca Nicole C Benitez, Ron Marrion T Chan, Anna Katrina G Co, Nicole Shandy F Cortez, Pj Brian F Galina, Michael Christian A Virata","doi":"10.1080/17582024.2025.2510842","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a progressive neurodegenerative disorder marked by motor dysfunction and complex gait abnormalities. Traditional linear methods often fail to capture the intricate movement patterns in PD. This review highlights Multiscale Entropy (MSE) as a promising tool for assessing gait dynamics, offering deeper insights into movement variability across multiple temporal scales. MSE distinguishes healthy and pathological gait patterns, enhancing early diagnosis and disease monitoring. Advances in wearable sensors, artificial intelligence, and machine learning have boosted MSE's clinical relevance by enabling real-time, personalized gait assessments. Despite these benefits, MSE faces challenges such as computational demands and the need for high-resolution data. Addressing these limitations through large-scale studies, standardized protocols, and integration of emerging technologies may support broader clinical adoption and the development of a robust normative database.</p>","PeriodicalId":19114,"journal":{"name":"Neurodegenerative disease management","volume":" ","pages":"1-14"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurodegenerative disease management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17582024.2025.2510842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Parkinson's disease (PD) is a progressive neurodegenerative disorder marked by motor dysfunction and complex gait abnormalities. Traditional linear methods often fail to capture the intricate movement patterns in PD. This review highlights Multiscale Entropy (MSE) as a promising tool for assessing gait dynamics, offering deeper insights into movement variability across multiple temporal scales. MSE distinguishes healthy and pathological gait patterns, enhancing early diagnosis and disease monitoring. Advances in wearable sensors, artificial intelligence, and machine learning have boosted MSE's clinical relevance by enabling real-time, personalized gait assessments. Despite these benefits, MSE faces challenges such as computational demands and the need for high-resolution data. Addressing these limitations through large-scale studies, standardized protocols, and integration of emerging technologies may support broader clinical adoption and the development of a robust normative database.

基于多尺度熵的帕金森病步态分析。
帕金森病(PD)是一种以运动功能障碍和复杂步态异常为特征的进行性神经退行性疾病。传统的线性方法往往无法捕捉PD中复杂的运动模式。这篇综述强调了多尺度熵(MSE)作为评估步态动力学的一个有前途的工具,提供了跨多个时间尺度的运动变异性的更深入的见解。MSE区分健康和病理步态模式,加强早期诊断和疾病监测。可穿戴传感器、人工智能和机器学习的进步通过实现实时、个性化的步态评估,提高了MSE的临床相关性。尽管有这些优点,但MSE面临着计算需求和高分辨率数据需求等挑战。通过大规模研究、标准化方案和新兴技术的整合来解决这些局限性,可能会支持更广泛的临床应用和健全的规范数据库的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
35
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信