Ahmed Eltayeb, Muhamed Adilović, Maryam Golzardi, Altijana Hromić-Jahjefendić, Alberto Rubio-Casillas, Vladimir N Uversky, Elrashdy M Redwan
{"title":"Intrinsic factors behind long COVID: exploring the role of nucleocapsid protein in thrombosis.","authors":"Ahmed Eltayeb, Muhamed Adilović, Maryam Golzardi, Altijana Hromić-Jahjefendić, Alberto Rubio-Casillas, Vladimir N Uversky, Elrashdy M Redwan","doi":"10.7717/peerj.19429","DOIUrl":null,"url":null,"abstract":"<p><p>COVID-19, caused by the SARS-CoV-2, poses significant global health challenges. A key player in its pathogenesis is the nucleocapsid protein (NP), which is crucial for viral replication and assembly. While NPs from other coronaviruses, such as SARS-CoV and MERS-CoV, are known to increase inflammation and cause acute lung injury, the specific effects of the SARS-CoV-2 NP on host cells remain largely unexplored. Recent findings suggest that the NP acts as a pathogen-associated molecular pattern (PAMP) that binds to Toll-like receptor 2 (TLR2), activating NF-<i>κ</i>B (nuclear factor kappa-light-chain-enhancer of activated B cells) and MAPK (mitogen-activated protein kinase) signaling pathways. This activation is particularly pronounced in severe COVID-19 cases, leading to elevated levels of soluble ICAM-1 (intercellular adhesion molecule 1) and VCAM-1 (vascular cell adhesion molecule 1), which contribute to endothelial dysfunction and multiorgan damage. Furthermore, the NP is implicated in hyperinflammation and thrombosis-key factors in COVID-19 severity and long COVID. Its potential to bind with MASP-2 (mannan-binding lectin serine protease 2) may also be linked to persistent symptoms in long COVID patients. Understanding these mechanisms, particularly the role of the NP in thrombosis, is essential for developing targeted therapies to manage both acute and chronic effects of COVID-19 effectively. This comprehensive review aims to elucidate the multifaceted roles of the NP, highlighting its contributions to viral pathogenesis, immune evasion, and the exacerbation of thrombotic events, thereby providing insights into potential therapeutic targets for mitigating the severe and long-term impacts of COVID-19.</p>","PeriodicalId":19799,"journal":{"name":"PeerJ","volume":"13 ","pages":"e19429"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101441/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7717/peerj.19429","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
COVID-19, caused by the SARS-CoV-2, poses significant global health challenges. A key player in its pathogenesis is the nucleocapsid protein (NP), which is crucial for viral replication and assembly. While NPs from other coronaviruses, such as SARS-CoV and MERS-CoV, are known to increase inflammation and cause acute lung injury, the specific effects of the SARS-CoV-2 NP on host cells remain largely unexplored. Recent findings suggest that the NP acts as a pathogen-associated molecular pattern (PAMP) that binds to Toll-like receptor 2 (TLR2), activating NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) and MAPK (mitogen-activated protein kinase) signaling pathways. This activation is particularly pronounced in severe COVID-19 cases, leading to elevated levels of soluble ICAM-1 (intercellular adhesion molecule 1) and VCAM-1 (vascular cell adhesion molecule 1), which contribute to endothelial dysfunction and multiorgan damage. Furthermore, the NP is implicated in hyperinflammation and thrombosis-key factors in COVID-19 severity and long COVID. Its potential to bind with MASP-2 (mannan-binding lectin serine protease 2) may also be linked to persistent symptoms in long COVID patients. Understanding these mechanisms, particularly the role of the NP in thrombosis, is essential for developing targeted therapies to manage both acute and chronic effects of COVID-19 effectively. This comprehensive review aims to elucidate the multifaceted roles of the NP, highlighting its contributions to viral pathogenesis, immune evasion, and the exacerbation of thrombotic events, thereby providing insights into potential therapeutic targets for mitigating the severe and long-term impacts of COVID-19.
期刊介绍:
PeerJ is an open access peer-reviewed scientific journal covering research in the biological and medical sciences. At PeerJ, authors take out a lifetime publication plan (for as little as $99) which allows them to publish articles in the journal for free, forever. PeerJ has 5 Nobel Prize Winners on the Board; they have won several industry and media awards; and they are widely recognized as being one of the most interesting recent developments in academic publishing.