[Electroacupuncture pretreatment alleviates cerebral ischemia-reperfusion injury in rats by inhibiting ferroptosis through the gut-brain axis and the Nrf2/HO-1 signaling pathway].
Anbang Zhang, Xiuqi Sun, Bo Pang, Yuanhua Wu, Jingyu Shi, Ning Zhang, Tao Ye
{"title":"[Electroacupuncture pretreatment alleviates cerebral ischemia-reperfusion injury in rats by inhibiting ferroptosis through the gut-brain axis and the Nrf2/HO-1 signaling pathway].","authors":"Anbang Zhang, Xiuqi Sun, Bo Pang, Yuanhua Wu, Jingyu Shi, Ning Zhang, Tao Ye","doi":"10.12122/j.issn.1673-4254.2025.05.03","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To investigate the neuroprotective effects of electroacupuncture (EA) preconditioning against cerebral ischemia-reperfusion injury (CIRI) mediated by gut microbiota modulation, Nrf2/HO-1 pathway activation, and ferroptosis suppression.</p><p><strong>Methods: </strong>Adult male SD rats were divided into sham operation group, CIRI model group, and EA preconditioning group. In the latter two groups, rat models of CIRI were established by middle cerebral artery occlusion (MCAO), and in EA preconditioning group, EA was applied at Baihui (DU20) and Zusanli (ST36) for 3 days before modeling. Neurological deficits, cerebral infarction, and hippocampal pathology of the rats were evaluated using behavioral tests, TTC staining, and Nissl and HE staining, and the oxidative stress markers (MDA, ROS, and SOD), apoptosis/ferroptosis-related proteins (Bax, Bcl-2, GPX4, and SLC7A11), and changes in gut microbiota were analyzed.</p><p><strong>Results: </strong>EA preconditioning significantly reduced neurological deficits, decreased infarct volume, promoted hippocampal neuronal survival, and improved structural integrity of the hippocampal neurons in MCAO rats. EA preconditioning also significantly lowered MDA and ROS and increased SOD levels, upregulated Bcl-2, GPX4, and SLC7A11 expressions, and downregulated Bax expression in the hippocampal tissue of the rats, causing also activation of Nrf2/HO-1 signaling and improvement of gut microbiota composition.</p><p><strong>Conclusions: </strong>EA preconditioning alleviates CIRI in rats by suppressing ferroptosis and apoptosis, enhancing antioxidant defenses via activating Nrf2/HO-1 signaling, and regulating the gut-brain axis.</p>","PeriodicalId":18962,"journal":{"name":"南方医科大学学报杂志","volume":"45 5","pages":"911-920"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104739/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"南方医科大学学报杂志","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12122/j.issn.1673-4254.2025.05.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To investigate the neuroprotective effects of electroacupuncture (EA) preconditioning against cerebral ischemia-reperfusion injury (CIRI) mediated by gut microbiota modulation, Nrf2/HO-1 pathway activation, and ferroptosis suppression.
Methods: Adult male SD rats were divided into sham operation group, CIRI model group, and EA preconditioning group. In the latter two groups, rat models of CIRI were established by middle cerebral artery occlusion (MCAO), and in EA preconditioning group, EA was applied at Baihui (DU20) and Zusanli (ST36) for 3 days before modeling. Neurological deficits, cerebral infarction, and hippocampal pathology of the rats were evaluated using behavioral tests, TTC staining, and Nissl and HE staining, and the oxidative stress markers (MDA, ROS, and SOD), apoptosis/ferroptosis-related proteins (Bax, Bcl-2, GPX4, and SLC7A11), and changes in gut microbiota were analyzed.
Results: EA preconditioning significantly reduced neurological deficits, decreased infarct volume, promoted hippocampal neuronal survival, and improved structural integrity of the hippocampal neurons in MCAO rats. EA preconditioning also significantly lowered MDA and ROS and increased SOD levels, upregulated Bcl-2, GPX4, and SLC7A11 expressions, and downregulated Bax expression in the hippocampal tissue of the rats, causing also activation of Nrf2/HO-1 signaling and improvement of gut microbiota composition.
Conclusions: EA preconditioning alleviates CIRI in rats by suppressing ferroptosis and apoptosis, enhancing antioxidant defenses via activating Nrf2/HO-1 signaling, and regulating the gut-brain axis.