SPATIAL MODELING OF RISK FACTORS FOR UNDER-FIVE PNEUMONIA IN ROKAN HILIR DISTRICT, INDONESIA.

Q4 Medicine
African Journal of Infectious Diseases Pub Date : 2025-04-07 eCollection Date: 2025-01-01 DOI:10.21010/Ajidv19i2.3
Yusdiana Yusdiana, Sukendi Sukendi, Siregar Yusni Ikhwan, Afandi Dedi
{"title":"SPATIAL MODELING OF RISK FACTORS FOR UNDER-FIVE PNEUMONIA IN ROKAN HILIR DISTRICT, INDONESIA.","authors":"Yusdiana Yusdiana, Sukendi Sukendi, Siregar Yusni Ikhwan, Afandi Dedi","doi":"10.21010/Ajidv19i2.3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Under-five pneumonia remains a critical health issue in Indonesia. Identifying risk factors using spatial models is crucial for developing effective disease-prevention strategies. This study aimed to identify risk factors and create a spatial model for under-five pneumonia distribution based on regional vulnerability.</p><p><strong>Materials and methods: </strong>This study used a mixed-method approach that integrated mathematical models and GIS to identify risk factors using generalized Poisson regression (GPR) and developed a GIS-based spatial model with inverse distance weighted (IDW) and natural break methods.</p><p><strong>Results: </strong>The GPR model revealed significant associations between under-five pneumonia and population density (β = 0.004, Z<sub>-score</sub> = 6.118), rainfall (β = 0.002, Z<sub>-score</sub> = 6.031), malnutrition (β = 1.786, Z<sub>-score</sub> = 3.696), and health facilities (β = 0.073, Z<sub>-score</sub> = 13.527). Protective factors included exclusive breastfeeding (β = -0.004, Z<sub>-score</sub> = -2.874), healthy homes (β = -0.021, Z<sub>-score</sub> = -9.532), and under-five health service coverage (β = -0.003, Z<sub>-score</sub> = -2.225). Spatial modeling classified regions into high-risk (5 subdistricts), medium-risk (11 subdistricts), and low-risk (3 subdistricts).</p><p><strong>Conclusion: </strong>This study identified key risk factors and mapped spatial vulnerability for under-five pneumonia. Targeted, integrated interventions in high-risk areas are essential to reduce pneumonia incidence below 12 cases per 1,000 children under five by 2030, aligning with global health goals.</p>","PeriodicalId":39108,"journal":{"name":"African Journal of Infectious Diseases","volume":"19 2","pages":"15-32"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102673/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"African Journal of Infectious Diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21010/Ajidv19i2.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Under-five pneumonia remains a critical health issue in Indonesia. Identifying risk factors using spatial models is crucial for developing effective disease-prevention strategies. This study aimed to identify risk factors and create a spatial model for under-five pneumonia distribution based on regional vulnerability.

Materials and methods: This study used a mixed-method approach that integrated mathematical models and GIS to identify risk factors using generalized Poisson regression (GPR) and developed a GIS-based spatial model with inverse distance weighted (IDW) and natural break methods.

Results: The GPR model revealed significant associations between under-five pneumonia and population density (β = 0.004, Z-score = 6.118), rainfall (β = 0.002, Z-score = 6.031), malnutrition (β = 1.786, Z-score = 3.696), and health facilities (β = 0.073, Z-score = 13.527). Protective factors included exclusive breastfeeding (β = -0.004, Z-score = -2.874), healthy homes (β = -0.021, Z-score = -9.532), and under-five health service coverage (β = -0.003, Z-score = -2.225). Spatial modeling classified regions into high-risk (5 subdistricts), medium-risk (11 subdistricts), and low-risk (3 subdistricts).

Conclusion: This study identified key risk factors and mapped spatial vulnerability for under-five pneumonia. Targeted, integrated interventions in high-risk areas are essential to reduce pneumonia incidence below 12 cases per 1,000 children under five by 2030, aligning with global health goals.

印度尼西亚rokan hilir地区五岁以下儿童肺炎危险因素的空间建模。
背景:五岁以下儿童肺炎在印度尼西亚仍然是一个严重的健康问题。利用空间模型确定风险因素对于制定有效的疾病预防战略至关重要。本研究旨在识别五岁以下儿童肺炎的危险因素,并建立基于区域脆弱性的空间分布模型。材料和方法:本研究采用综合数学模型和GIS的混合方法,利用广义泊松回归(GPR)识别危险因素,并建立了基于GIS的空间模型,采用逆距离加权(IDW)和自然断裂方法。结果:GPR模型显示,5岁以下儿童肺炎与人口密度(β = 0.004, Z-score = 6.118)、降雨量(β = 0.002, Z-score = 6.031)、营养不良(β = 1.786, Z-score = 3.696)、卫生设施(β = 0.073, Z-score = 13.527)存在显著相关。保护性因素包括纯母乳喂养(β = -0.004, Z-score = -2.874)、健康家庭(β = -0.021, Z-score = -9.532)和五岁以下儿童卫生服务覆盖率(β = -0.003, Z-score = -2.225)。空间建模将区域划分为高风险(5个街区)、中风险(11个街区)和低风险(3个街区)。结论:本研究确定了五岁以下儿童肺炎的关键危险因素并绘制了空间易感性图。在高风险地区采取有针对性的综合干预措施,对于到2030年将肺炎发病率降至每1 000名5岁以下儿童12例以下,并与全球卫生目标保持一致至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
African Journal of Infectious Diseases
African Journal of Infectious Diseases Medicine-Infectious Diseases
CiteScore
1.60
自引率
0.00%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信