Florian Edbauer, Hans-Christoph Ludwig, Marie Julia Moritz, Roland Nau, Jana Seele
{"title":"Micro- and nanoplastics reduce the phagocytosis and intracellular killing of E. coli by THP1-Blue™ NFκB monocytes.","authors":"Florian Edbauer, Hans-Christoph Ludwig, Marie Julia Moritz, Roland Nau, Jana Seele","doi":"10.1007/s15010-025-02565-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Micro- and nanoplastic particles occur ubiquitously in the environment and have been detected in various organs in animals and humans. We studied, how micro- and nanoplastic influence phagocytosis and intracellular killing of live bacteria in human monocytes.</p><p><strong>Methods: </strong>Cells of the human reporter cell line THP1-Blue™ NFκB were pre-treated with different concentrations of micro- and nanoplastic (diameter 1 μm and 100 nm) and then incubated with Escherichia coli DH5α. Phagocytosis and intracellular killing was studied using an antibiotic protection assay. The activation of the NFκB promoter was quantified by measuring the production of alkaline phosphatase. Cytokines were measured by enzyme immunoassay. Cell viability was determined by trypan blue staining and lactate dehydrogenase measurement. Electron microscopic images were taken to localize micro- and nanoplastic.</p><p><strong>Results: </strong>Micro- and nanoplastic particles were rapidly internalized by monocytes. They reduced phagocytosis of E. coli in a concentration- and time-dependent manner. Exposure to micro- and nanoplastic also reduced the intracellular killing of bacteria in a concentration-dependent manner. Plain plastic particles did not induce NFκB synthesis and IL1β and IL6 release. At concentrations inhibiting phagocytosis, micro- and nanoplastic was not cytotoxic. Endotoxin stimulated phagocytosis of bacteria. High concentrations of plastic particles reduced the stimulatory effect of endotoxin on phagocytosis of bacteria, but not the effect on NFκB synthesis.</p><p><strong>Conclusion: </strong>Exposure to micro- and nanoplastic reduced the ability of phagocytes to internalize and kill bacteria. High plastic concentrations decreased the endotoxin-stimulated phagocytosis of bacteria. Hence, exposure to plastic particles may reduce the host`s immune defence against bacterial pathogens.</p>","PeriodicalId":13600,"journal":{"name":"Infection","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s15010-025-02565-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Micro- and nanoplastic particles occur ubiquitously in the environment and have been detected in various organs in animals and humans. We studied, how micro- and nanoplastic influence phagocytosis and intracellular killing of live bacteria in human monocytes.
Methods: Cells of the human reporter cell line THP1-Blue™ NFκB were pre-treated with different concentrations of micro- and nanoplastic (diameter 1 μm and 100 nm) and then incubated with Escherichia coli DH5α. Phagocytosis and intracellular killing was studied using an antibiotic protection assay. The activation of the NFκB promoter was quantified by measuring the production of alkaline phosphatase. Cytokines were measured by enzyme immunoassay. Cell viability was determined by trypan blue staining and lactate dehydrogenase measurement. Electron microscopic images were taken to localize micro- and nanoplastic.
Results: Micro- and nanoplastic particles were rapidly internalized by monocytes. They reduced phagocytosis of E. coli in a concentration- and time-dependent manner. Exposure to micro- and nanoplastic also reduced the intracellular killing of bacteria in a concentration-dependent manner. Plain plastic particles did not induce NFκB synthesis and IL1β and IL6 release. At concentrations inhibiting phagocytosis, micro- and nanoplastic was not cytotoxic. Endotoxin stimulated phagocytosis of bacteria. High concentrations of plastic particles reduced the stimulatory effect of endotoxin on phagocytosis of bacteria, but not the effect on NFκB synthesis.
Conclusion: Exposure to micro- and nanoplastic reduced the ability of phagocytes to internalize and kill bacteria. High plastic concentrations decreased the endotoxin-stimulated phagocytosis of bacteria. Hence, exposure to plastic particles may reduce the host`s immune defence against bacterial pathogens.
期刊介绍:
Infection is a journal dedicated to serving as a global forum for the presentation and discussion of clinically relevant information on infectious diseases. Its primary goal is to engage readers and contributors from various regions around the world in the exchange of knowledge about the etiology, pathogenesis, diagnosis, and treatment of infectious diseases, both in outpatient and inpatient settings.
The journal covers a wide range of topics, including:
Etiology: The study of the causes of infectious diseases.
Pathogenesis: The process by which an infectious agent causes disease.
Diagnosis: The methods and techniques used to identify infectious diseases.
Treatment: The medical interventions and strategies employed to treat infectious diseases.
Public Health: Issues of local, regional, or international significance related to infectious diseases, including prevention, control, and management strategies.
Hospital Epidemiology: The study of the spread of infectious diseases within healthcare settings and the measures to prevent nosocomial infections.
In addition to these, Infection also includes a specialized "Images" section, which focuses on high-quality visual content, such as images, photographs, and microscopic slides, accompanied by brief abstracts. This section is designed to highlight the clinical and diagnostic value of visual aids in the field of infectious diseases, as many conditions present with characteristic clinical signs that can be diagnosed through inspection, and imaging and microscopy are crucial for accurate diagnosis. The journal's comprehensive approach ensures that it remains a valuable resource for healthcare professionals and researchers in the field of infectious diseases.