Antigenic peptide delivery to antigen-presenting cells using a CD40-coiled coil affinity-based platform.

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Drug Delivery Pub Date : 2025-12-01 Epub Date: 2025-05-26 DOI:10.1080/10717544.2025.2486340
Barnabas Nyesiga, Karin Hägerbrand, Laura Varas, Anette Gjörloff Wingren, Mats Ohlin, Peter Ellmark, Laura von Schantz
{"title":"Antigenic peptide delivery to antigen-presenting cells using a CD40-coiled coil affinity-based platform.","authors":"Barnabas Nyesiga, Karin Hägerbrand, Laura Varas, Anette Gjörloff Wingren, Mats Ohlin, Peter Ellmark, Laura von Schantz","doi":"10.1080/10717544.2025.2486340","DOIUrl":null,"url":null,"abstract":"<p><p>Delivery of antigenic peptides to antigen presenting cells (APCs) such as dendritic cells (DCs) using monoclonal antibodies (mAbs) is an attractive approach to evoke antigen-specific T cell activation and improve drug efficacy. Peptide linkage to mAbs has previously been achieved through genetic fusion, chemical conjugation, nano-engineered platforms and high affinity peptides. In this study, we have developed a flexible antibody-peptide linking technology using oppositely charged coiled coil domains to non-covalently link peptides to mAbs. The technology comprises (1) an anti-CD40 mAb connected with negatively charged E domains and (2) an immunogenic OVA peptide (SIINFEKL) from ovalbumin used as a model antigenic peptide fused with positively charged K domains. Combining these constructs leads to the formation of complexes that can be targeted to CD40 expressed on cells. Proof of concept antibody constructs connected with E domains generated from transient expressions exhibited good manufacturability, binding, and stability attributes comparable to a control mAb. Also, optimal repeat lengths for coiled-coil oligomerization domains were identified in these studies. Binding kinetics studies showed that connecting E domains to mAbs do not impede Fc gamma and neonatal receptor interactions. Additionally, formation of stable complexes capable of binding CD40 expressing cells was demonstrated <i>in vitro. In vivo</i> functionality evaluations showed that treatment of human CD40 transgenic mice with complexes elicited expansion of OVA peptide-specific CD8+ T cells and potent antitumor effects superior to peptide monotherapies. Overall, these findings demonstrate that the technology has great potential for application as an <i>in vivo</i> tool for antigenic peptide delivery.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"32 1","pages":"2486340"},"PeriodicalIF":6.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12107651/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2025.2486340","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Delivery of antigenic peptides to antigen presenting cells (APCs) such as dendritic cells (DCs) using monoclonal antibodies (mAbs) is an attractive approach to evoke antigen-specific T cell activation and improve drug efficacy. Peptide linkage to mAbs has previously been achieved through genetic fusion, chemical conjugation, nano-engineered platforms and high affinity peptides. In this study, we have developed a flexible antibody-peptide linking technology using oppositely charged coiled coil domains to non-covalently link peptides to mAbs. The technology comprises (1) an anti-CD40 mAb connected with negatively charged E domains and (2) an immunogenic OVA peptide (SIINFEKL) from ovalbumin used as a model antigenic peptide fused with positively charged K domains. Combining these constructs leads to the formation of complexes that can be targeted to CD40 expressed on cells. Proof of concept antibody constructs connected with E domains generated from transient expressions exhibited good manufacturability, binding, and stability attributes comparable to a control mAb. Also, optimal repeat lengths for coiled-coil oligomerization domains were identified in these studies. Binding kinetics studies showed that connecting E domains to mAbs do not impede Fc gamma and neonatal receptor interactions. Additionally, formation of stable complexes capable of binding CD40 expressing cells was demonstrated in vitro. In vivo functionality evaluations showed that treatment of human CD40 transgenic mice with complexes elicited expansion of OVA peptide-specific CD8+ T cells and potent antitumor effects superior to peptide monotherapies. Overall, these findings demonstrate that the technology has great potential for application as an in vivo tool for antigenic peptide delivery.

抗原肽递送到抗原呈递细胞使用cd40线圈亲和为基础的平台。
利用单克隆抗体(mab)将抗原肽递送到抗原提呈细胞(APCs),如树突状细胞(DCs),是一种有吸引力的方法,可以激活抗原特异性T细胞并提高药物疗效。先前通过基因融合、化学偶联、纳米工程平台和高亲和肽实现了与单克隆抗体的肽链。在这项研究中,我们开发了一种灵活的抗体-肽连接技术,使用相反带电的线圈结构域将非共价连接肽与单克隆抗体。该技术包括(1)与带负电荷的E结构域连接的抗cd40单抗和(2)来自卵清蛋白的免疫原性OVA肽(SIINFEKL),用作与带正电荷的K结构域融合的模型抗原肽。结合这些结构可形成靶向细胞上表达的CD40的复合物。与瞬时表达产生的E结构域连接的概念验证抗体构建物具有与对照单抗相当的良好可制造性、结合性和稳定性。此外,在这些研究中确定了线圈-线圈寡聚化结构域的最佳重复长度。结合动力学研究表明,将E结构域连接到单克隆抗体不会阻碍Fc γ和新生儿受体的相互作用。此外,在体外实验中证实了能够结合CD40表达细胞的稳定复合物的形成。体内功能评估表明,用复合物治疗人CD40转基因小鼠可引起OVA肽特异性CD8+ T细胞的扩增,其抗肿瘤效果优于肽单药治疗。总的来说,这些发现表明,该技术具有巨大的应用潜力,作为一种体内抗原肽递送工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Delivery
Drug Delivery 医学-药学
CiteScore
11.80
自引率
5.00%
发文量
250
审稿时长
3.3 months
期刊介绍: Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信