{"title":"Dissipation-induced non-equilibrium phases with temporal and spatial order.","authors":"Zhao Zhang, Davide Dreon, Tilman Esslinger, Dieter Jaksch, Berislav Buca, Tobias Donner","doi":"10.1038/s42005-025-02113-1","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding spatial and temporal order in many-body systems is a key challenge, particularly in out-of-equilibrium settings. A major hurdle is developing controlled model systems to study these phases. We propose an experiment with a driven quantum gas coupled to a dissipative optical cavity, realizing a non-equilibrium phase diagram featuring both spatial and temporal order. The system's control parameter is the detuning between the drive frequency and cavity resonance. Negative detunings yield a spatially ordered phase, while positive detunings produce phases with both spatial order and persistent oscillations, forming dissipative spatio-temporal lattices. We also identify a phase where the dynamics dephase, leading to chaotic behavior. Numerical and analytical evidence supports these superradiant phases, showing that the spatio-temporal lattice originates from cavity dissipation. The atoms experience accelerated transport, either via uniform acceleration or abrupt momentum transitions. Our work provides insights into temporal phases of matter not possible at equilibrium.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"211"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12098123/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s42005-025-02113-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding spatial and temporal order in many-body systems is a key challenge, particularly in out-of-equilibrium settings. A major hurdle is developing controlled model systems to study these phases. We propose an experiment with a driven quantum gas coupled to a dissipative optical cavity, realizing a non-equilibrium phase diagram featuring both spatial and temporal order. The system's control parameter is the detuning between the drive frequency and cavity resonance. Negative detunings yield a spatially ordered phase, while positive detunings produce phases with both spatial order and persistent oscillations, forming dissipative spatio-temporal lattices. We also identify a phase where the dynamics dephase, leading to chaotic behavior. Numerical and analytical evidence supports these superradiant phases, showing that the spatio-temporal lattice originates from cavity dissipation. The atoms experience accelerated transport, either via uniform acceleration or abrupt momentum transitions. Our work provides insights into temporal phases of matter not possible at equilibrium.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.