The DNA damage tolerance factor Rad5 and telomere replication.

IF 1.8 4区 生物学 Q3 GENETICS & HEREDITY
Stefano Mattarocci
{"title":"The DNA damage tolerance factor Rad5 and telomere replication.","authors":"Stefano Mattarocci","doi":"10.1007/s00294-025-01315-y","DOIUrl":null,"url":null,"abstract":"<p><p>The DNA Damage Tolerance pathway (DDT) is one of the major mechanisms for resolving replication fork blocks. A key factor in DDT is the fork-associated clamp PCNA, which can undergo to mono- or polyubiquitination, leading to error-prone or error-free modes of DNA damage bypass, respectively. In the yeast Saccharomyces cerevisiae, Rad5<sup>HLTF/SNF2</sup> factor plays important roles in both pathways: (i) promoting the error-free mode through PCNA polyubiquitination and transient template switching and (ii) interacting with specialized DNA polymerases involved in the error-prone pathway. Rad5 also associates with telomeres, the repetitive DNA regions present at the ends of chromosomes. Telomeric DNA, tightly bound by tandem proteins arrays, poses unique challenges to replication fork progression. Here, I review the current understanding of the link between Rad5 and telomeres and provide evidence that Rad5 binds to yeast telomeres, with notable enrichment during telomere replication. This finding highlights a connection between telomeres and an important DDT factor in unperturbed wild-type cells, raising intriguing possibilities regarding the functional interplay between telomere replication and DNA damage tolerance mechanisms.</p>","PeriodicalId":10918,"journal":{"name":"Current Genetics","volume":"71 1","pages":"11"},"PeriodicalIF":1.8000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12106482/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00294-025-01315-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The DNA Damage Tolerance pathway (DDT) is one of the major mechanisms for resolving replication fork blocks. A key factor in DDT is the fork-associated clamp PCNA, which can undergo to mono- or polyubiquitination, leading to error-prone or error-free modes of DNA damage bypass, respectively. In the yeast Saccharomyces cerevisiae, Rad5HLTF/SNF2 factor plays important roles in both pathways: (i) promoting the error-free mode through PCNA polyubiquitination and transient template switching and (ii) interacting with specialized DNA polymerases involved in the error-prone pathway. Rad5 also associates with telomeres, the repetitive DNA regions present at the ends of chromosomes. Telomeric DNA, tightly bound by tandem proteins arrays, poses unique challenges to replication fork progression. Here, I review the current understanding of the link between Rad5 and telomeres and provide evidence that Rad5 binds to yeast telomeres, with notable enrichment during telomere replication. This finding highlights a connection between telomeres and an important DDT factor in unperturbed wild-type cells, raising intriguing possibilities regarding the functional interplay between telomere replication and DNA damage tolerance mechanisms.

DNA损伤耐受因子Rad5与端粒复制。
DNA损伤耐受途径(DDT)是解决复制分叉阻滞的主要机制之一。DDT的一个关键因素是叉形钳形PCNA,它可以经历单泛素化或多泛素化,分别导致易出错或无错误的DNA损伤旁路模式。在酿酒酵母中,Rad5HLTF/SNF2因子在两种途径中都发挥着重要作用:(i)通过PCNA多泛素化和瞬时模板切换促进无错误模式,(ii)与易出错途径中涉及的特异性DNA聚合酶相互作用。Rad5也与端粒有关,端粒是染色体末端的重复DNA区域。端粒DNA由串联蛋白阵列紧密结合,对复制叉的进展提出了独特的挑战。在这里,我回顾了目前对Rad5与端粒之间联系的理解,并提供证据表明Rad5与酵母端粒结合,并在端粒复制过程中显著富集。这一发现强调了端粒与未受干扰的野生型细胞中重要的DDT因子之间的联系,提出了端粒复制和DNA损伤耐受机制之间功能相互作用的有趣可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Genetics
Current Genetics 生物-遗传学
CiteScore
6.00
自引率
0.00%
发文量
34
审稿时长
1 months
期刊介绍: Current Genetics publishes genetic, genomic, molecular and systems-level analysis of eukaryotic and prokaryotic microorganisms and cell organelles. All articles are peer-reviewed. The journal welcomes submissions employing any type of research approach, be it analytical (aiming at a better understanding), applied (aiming at practical applications), synthetic or theoretical. Current Genetics no longer accepts manuscripts describing the genome sequence of mitochondria/chloroplast of a small number of species. Manuscripts covering sequence comparisons and analyses that include a large number of species will still be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信