Conformal predictive intervals in survival analysis: a resampling approach.

IF 1.7 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2025-04-02 DOI:10.1093/biomtc/ujaf063
Jing Qin, Jin Piao, Jing Ning, Yu Shen
{"title":"Conformal predictive intervals in survival analysis: a resampling approach.","authors":"Jing Qin, Jin Piao, Jing Ning, Yu Shen","doi":"10.1093/biomtc/ujaf063","DOIUrl":null,"url":null,"abstract":"<p><p>The distribution-free method of conformal prediction has gained considerable attention in computer science, machine learning, and statistics. Candès et al. extended this method to right-censored survival data, addressing right-censoring complexity by creating a covariate shift setting, extracting a subcohort of subjects with censoring times exceeding a fixed threshold. Their approach only estimates the lower prediction bound for type I censoring, where all subjects have available censoring times regardless of their failure status. In medical applications, we often encounter more general right-censored data, observing only the minimum of failure time and censoring time. Subjects with observed failure times have unavailable censoring times. To address this, we propose a bootstrap method to construct 1- as well as 2-sided conformal predictive intervals for general right-censored survival data under different working regression models. Through simulations, our method demonstrates excellent average coverage for the lower bound and good coverage for the 2-sided predictive interval, regardless of working model is correctly specified or not, particularly under moderate censoring. We further extend the proposed method to several directions in medical applications. We apply this method to predict breast cancer patients' future survival times based on tumor characteristics and treatment.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104816/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf063","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The distribution-free method of conformal prediction has gained considerable attention in computer science, machine learning, and statistics. Candès et al. extended this method to right-censored survival data, addressing right-censoring complexity by creating a covariate shift setting, extracting a subcohort of subjects with censoring times exceeding a fixed threshold. Their approach only estimates the lower prediction bound for type I censoring, where all subjects have available censoring times regardless of their failure status. In medical applications, we often encounter more general right-censored data, observing only the minimum of failure time and censoring time. Subjects with observed failure times have unavailable censoring times. To address this, we propose a bootstrap method to construct 1- as well as 2-sided conformal predictive intervals for general right-censored survival data under different working regression models. Through simulations, our method demonstrates excellent average coverage for the lower bound and good coverage for the 2-sided predictive interval, regardless of working model is correctly specified or not, particularly under moderate censoring. We further extend the proposed method to several directions in medical applications. We apply this method to predict breast cancer patients' future survival times based on tumor characteristics and treatment.

生存分析中的适形预测区间:重采样方法。
保形预测的无分布方法在计算机科学、机器学习和统计学中获得了相当大的关注。cand等人将该方法扩展到右审查生存数据,通过创建协变量移位设置来解决右审查复杂性,提取审查次数超过固定阈值的受试者亚队列。他们的方法只估计类型I审查的较低预测界限,其中所有受试者都有可用的审查时间,而不管他们的失败状态。在医疗应用中,我们经常遇到更一般的右审查数据,只观察到最小的故障时间和审查时间。观察到失败时间的对象无法获得审查时间。为了解决这个问题,我们提出了一种自举方法来构建在不同工作回归模型下的一般右截尾生存数据的1侧和2侧共形预测区间。通过模拟,无论工作模型是否正确指定,特别是在适度审查下,我们的方法都证明了下界的良好平均覆盖率和双侧预测区间的良好覆盖率。我们进一步将所提出的方法扩展到医学应用的几个方向。我们应用该方法根据肿瘤特征和治疗来预测乳腺癌患者的未来生存时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信