Emadeldin M Kamel, Ahmed A Allam, Hassan A Rudayni, Saleh Alkhedhairi, Faris F Aba Alkhayl, Maha A Alwaili, Al Mokhtar Lamsabhi
{"title":"Mechanistic Insights into Polyphenols-mediated Squalene Epoxidase Inhibition: Computational Models and Experimental Validation for Targeting Cholesterol Biosynthesis.","authors":"Emadeldin M Kamel, Ahmed A Allam, Hassan A Rudayni, Saleh Alkhedhairi, Faris F Aba Alkhayl, Maha A Alwaili, Al Mokhtar Lamsabhi","doi":"10.1007/s12013-025-01784-5","DOIUrl":null,"url":null,"abstract":"<p><p>Squalene epoxidase is a key enzyme in sterol biosynthesis, particularly in cholesterol metabolism. Its inhibition has emerged as a promising therapeutic strategy for metabolic disorders, hypercholesterolemia, and certain infections. Herein, we investigated the SQLE inhibitory potential of six polyphenolic compounds, identified through in silico virtual screening of a large natural phenolic library and selected for high predicted binding affinity and structural diversity. Molecular docking demonstrated strong interactions between these candidates and SQLE, with curcumin exhibiting the highest binding affinity (-10.1 kcal/mol). Molecular dynamics simulations confirmed stable interactions for all compounds, highlighting curcumin, piceatannol, and pterostilbene as particularly favorable. Their strong binding free energies were further supported by MM/PBSA calculations (-36.62 ± 4.17, -31.32 ± 3.77, and -32.01 ± 1.34 kcal/mol, respectively), corroborated by free energy landscape analysis. ADMET profiling revealed diverse pharmacokinetic properties among the six polyphenolics. In vitro testing confirmed curcumin as the most potent inhibitor (IC<sub>50</sub> = 1.88 ± 0.21 µM), with piceatannol (2.55 ± 0.30 µM) and pterostilbene (2.69 ± 0.11 µM) following closely. Enzyme kinetics demonstrated that these three compounds act as competitive inhibitors targeting the enzyme's active site. Collectively, these findings highlight the combined power of computational and experimental approaches for identifying novel SQLE inhibitors.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-025-01784-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Squalene epoxidase is a key enzyme in sterol biosynthesis, particularly in cholesterol metabolism. Its inhibition has emerged as a promising therapeutic strategy for metabolic disorders, hypercholesterolemia, and certain infections. Herein, we investigated the SQLE inhibitory potential of six polyphenolic compounds, identified through in silico virtual screening of a large natural phenolic library and selected for high predicted binding affinity and structural diversity. Molecular docking demonstrated strong interactions between these candidates and SQLE, with curcumin exhibiting the highest binding affinity (-10.1 kcal/mol). Molecular dynamics simulations confirmed stable interactions for all compounds, highlighting curcumin, piceatannol, and pterostilbene as particularly favorable. Their strong binding free energies were further supported by MM/PBSA calculations (-36.62 ± 4.17, -31.32 ± 3.77, and -32.01 ± 1.34 kcal/mol, respectively), corroborated by free energy landscape analysis. ADMET profiling revealed diverse pharmacokinetic properties among the six polyphenolics. In vitro testing confirmed curcumin as the most potent inhibitor (IC50 = 1.88 ± 0.21 µM), with piceatannol (2.55 ± 0.30 µM) and pterostilbene (2.69 ± 0.11 µM) following closely. Enzyme kinetics demonstrated that these three compounds act as competitive inhibitors targeting the enzyme's active site. Collectively, these findings highlight the combined power of computational and experimental approaches for identifying novel SQLE inhibitors.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.