Regional variability in craniofacial stiffness: a study in normal and Crouzon mice during postnatal development.

IF 3 3区 医学 Q2 BIOPHYSICS
Marius Didziokas, Miranda Steacy, Tengyang Qiu, Arsalan Marghoub, Ali Alazmani, Erwin Pauws, Mehran Moazen
{"title":"Regional variability in craniofacial stiffness: a study in normal and Crouzon mice during postnatal development.","authors":"Marius Didziokas, Miranda Steacy, Tengyang Qiu, Arsalan Marghoub, Ali Alazmani, Erwin Pauws, Mehran Moazen","doi":"10.1007/s10237-025-01962-7","DOIUrl":null,"url":null,"abstract":"<p><p>Craniosynostosis (CS) is the premature closure of craniofacial joints known as sutures. Typically, this condition is treated by numerous invasive surgical interventions. Previously we investigated the level of mechanical strain induced due to frontal bone loading on a mouse model of this condition in light of a minimally invasive cyclic bone loading, showing success in retaining coronal suture patency in the Crouzon mouse model. Here we expanded on the previous investigations and characterised the response to external loading on the anterior part of the parietal bone, posterior part of the parietal bone and interparietal bone in addition to the previously investigated frontal bone loading. The results highlighted the significantly higher deformation of the skull and cranial joints during loading of the posterior skull compared to anterior skull loading. These results suggest that loading-based treatment requires different loading regimes depending on location. Additionally, the response of the coronal suture was investigated directly at postnatal day 7 (P7) in both mutant and wild-type animals. The wild-type mice exhibited significant deformation of the coronal suture across all loading locations, whereas no significant deformation was observed in the mutants. Finally, the experimental results were utilised to develop and analyse computational models of WT mice at three ages: P7, P14, and P21. This underscored the challenges in accurately capturing the highly variable response of the mouse craniofacial system to external loading. In summary, this work provided more details on the mechanics of the mouse craniofacial system and its variable overall stiffness across the different anatomical regions of the skull.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":"1207-1222"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12246019/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10237-025-01962-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Craniosynostosis (CS) is the premature closure of craniofacial joints known as sutures. Typically, this condition is treated by numerous invasive surgical interventions. Previously we investigated the level of mechanical strain induced due to frontal bone loading on a mouse model of this condition in light of a minimally invasive cyclic bone loading, showing success in retaining coronal suture patency in the Crouzon mouse model. Here we expanded on the previous investigations and characterised the response to external loading on the anterior part of the parietal bone, posterior part of the parietal bone and interparietal bone in addition to the previously investigated frontal bone loading. The results highlighted the significantly higher deformation of the skull and cranial joints during loading of the posterior skull compared to anterior skull loading. These results suggest that loading-based treatment requires different loading regimes depending on location. Additionally, the response of the coronal suture was investigated directly at postnatal day 7 (P7) in both mutant and wild-type animals. The wild-type mice exhibited significant deformation of the coronal suture across all loading locations, whereas no significant deformation was observed in the mutants. Finally, the experimental results were utilised to develop and analyse computational models of WT mice at three ages: P7, P14, and P21. This underscored the challenges in accurately capturing the highly variable response of the mouse craniofacial system to external loading. In summary, this work provided more details on the mechanics of the mouse craniofacial system and its variable overall stiffness across the different anatomical regions of the skull.

颅面硬度的区域变异性:出生后发育期间正常小鼠和Crouzon小鼠的研究。
颅缝闭合(CS)是颅面关节的过早闭合。通常,这种情况是通过许多侵入性手术干预来治疗的。在此之前,我们在微创循环骨负荷的基础上研究了这种情况下小鼠模型上额骨负荷引起的机械应变水平,显示了在Crouzon小鼠模型中成功保持冠状缝合线通畅。在这里,我们扩展了之前的研究,并描述了顶骨前部、顶骨后部和顶骨间的外部负荷的反应,以及之前研究的额骨负荷。结果显示,与前颅骨负荷相比,后颅骨负荷期间颅骨和颅关节的变形明显更高。这些结果表明,基于加载的处理需要不同的加载机制,这取决于位置。此外,在突变型和野生型动物中,冠状缝合在出生后第7天(P7)直接进行了研究。野生型小鼠冠状缝线在所有加载位置均出现明显变形,而突变型小鼠冠状缝线无明显变形。最后,利用实验结果建立和分析了P7、P14和P21三个年龄的WT小鼠的计算模型。这强调了准确捕捉小鼠颅面系统对外部负载的高度可变反应的挑战。总之,这项工作提供了更多关于小鼠颅面系统的力学细节及其在颅骨不同解剖区域的可变整体刚度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomechanics and Modeling in Mechanobiology
Biomechanics and Modeling in Mechanobiology 工程技术-工程:生物医学
CiteScore
7.10
自引率
8.60%
发文量
119
审稿时长
6 months
期刊介绍: Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that (1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury, (2) identify and quantify mechanosensitive responses and their mechanisms, (3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and (4) report discoveries that advance therapeutic and diagnostic procedures. Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信