Aristide Djoulde, Anup Sharma, Alfred Bekoe Appiagyei, Levi Tegg, Yang Liu, Lian Zhang, Julie M Cairney, Yunlong Tang, Jing Fu
{"title":"On-Tip Polymerization Method for Multimodal Characterization of Nanoparticles with Electron/Ion Imaging and Atom Probe Tomography.","authors":"Aristide Djoulde, Anup Sharma, Alfred Bekoe Appiagyei, Levi Tegg, Yang Liu, Lian Zhang, Julie M Cairney, Yunlong Tang, Jing Fu","doi":"10.1002/smtd.202500622","DOIUrl":null,"url":null,"abstract":"<p><p>This work presents a novel method for exploring the structures and chemistry of nanoparticles (NPs), addressing challenges in multimodal and correlative microscopy analysis. The proposed method utilizes a \"needle-eye\" design, featuring a through-microchannel fabricated at the needle tip. The microchannel and its surface are tuned via focused ion beam (FIB) milling and plasma treatment, enabling NPs dispersed in a resin precursor to be confined in the microchannel due to a pressure gradient upon immersion. The retained suspension is promptly polymerized in situ on the tip and shaped by FIB milling into specific geometries, including but not limited to a micropillar, lamella, and nanoneedle. Here, to demonstrate its applicability, a mixed metal oxide catalyst prepared by the needle-eye approach is characterized with energy-dispersive X-ray spectroscopy (EDX), FIB secondary ion mass spectrometry (FIB-SIMS), (scanning) transmission electron microscopy ((S)TEM), and atom probe tomography (APT). The results validate the ability of the method to achieve multimodal, combining correlative and complementary high-resolution structural and chemical imaging of individuals and clustered NPs. The proposed method confines picoliter-scale samples (6-60 pL) at a tip, eliminating lift-out and microtomy while enabling comprehensive analysis via combined microscopy techniques.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500622"},"PeriodicalIF":10.7000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500622","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a novel method for exploring the structures and chemistry of nanoparticles (NPs), addressing challenges in multimodal and correlative microscopy analysis. The proposed method utilizes a "needle-eye" design, featuring a through-microchannel fabricated at the needle tip. The microchannel and its surface are tuned via focused ion beam (FIB) milling and plasma treatment, enabling NPs dispersed in a resin precursor to be confined in the microchannel due to a pressure gradient upon immersion. The retained suspension is promptly polymerized in situ on the tip and shaped by FIB milling into specific geometries, including but not limited to a micropillar, lamella, and nanoneedle. Here, to demonstrate its applicability, a mixed metal oxide catalyst prepared by the needle-eye approach is characterized with energy-dispersive X-ray spectroscopy (EDX), FIB secondary ion mass spectrometry (FIB-SIMS), (scanning) transmission electron microscopy ((S)TEM), and atom probe tomography (APT). The results validate the ability of the method to achieve multimodal, combining correlative and complementary high-resolution structural and chemical imaging of individuals and clustered NPs. The proposed method confines picoliter-scale samples (6-60 pL) at a tip, eliminating lift-out and microtomy while enabling comprehensive analysis via combined microscopy techniques.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.