C R $CR$ analysis via local uniform completion, a sharp maximum modulus principle and holomorphic extension

IF 1.2 2区 数学 Q1 MATHEMATICS
Mauro Nacinovich, Egmont Porten
{"title":"C\n R\n \n $CR$\n analysis via local uniform completion, a sharp maximum modulus principle and holomorphic extension","authors":"Mauro Nacinovich,&nbsp;Egmont Porten","doi":"10.1112/jlms.70135","DOIUrl":null,"url":null,"abstract":"<p>Using iterated uniform local completion, we introduce a notion of continuous <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mi>R</mi>\n </mrow>\n <annotation>$CR$</annotation>\n </semantics></math> functions on locally closed subsets of reduced complex spaces, generalising both holomorphic functions and <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mi>R</mi>\n </mrow>\n <annotation>$CR$</annotation>\n </semantics></math> functions on <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mi>R</mi>\n </mrow>\n <annotation>$CR$</annotation>\n </semantics></math> submanifolds. Under additional assumptions of <i>set-theoretical weak pseudo-concavity</i>, we prove optimal maximum modulus principles for these functions, extending classical results for holomorphic functions and ordinary <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mi>R</mi>\n </mrow>\n <annotation>$CR$</annotation>\n </semantics></math> functions. Restricting to real submanifolds (possibly with <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mi>R</mi>\n </mrow>\n <annotation>$CR$</annotation>\n </semantics></math> singularities) of complex manifolds, we generalise results on holomorphic extension to full neighbourhoods known before only for <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mi>R</mi>\n </mrow>\n <annotation>$CR$</annotation>\n </semantics></math> submanifolds. The article is concluded by a study of <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mi>R</mi>\n </mrow>\n <annotation>$CR$</annotation>\n </semantics></math> singularities and explicit constructions of submanifolds on which the extension results are valid.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 5","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70135","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70135","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Using iterated uniform local completion, we introduce a notion of continuous C R $CR$ functions on locally closed subsets of reduced complex spaces, generalising both holomorphic functions and C R $CR$ functions on C R $CR$ submanifolds. Under additional assumptions of set-theoretical weak pseudo-concavity, we prove optimal maximum modulus principles for these functions, extending classical results for holomorphic functions and ordinary C R $CR$ functions. Restricting to real submanifolds (possibly with C R $CR$ singularities) of complex manifolds, we generalise results on holomorphic extension to full neighbourhoods known before only for C R $CR$ submanifolds. The article is concluded by a study of C R $CR$ singularities and explicit constructions of submanifolds on which the extension results are valid.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

利用局部一致补全、锐极大模原理和全纯扩展分析CR$ CR$
利用迭代一致局部补齐,我们在简化复空间的局部闭子集上引入了连续CR$ CR$函数的概念,推广全纯函数和CR$ CR$在CR$ CR$子流形上的函数。在集论弱伪凸性的附加假设下,我们证明了这些函数的最优最大模原理,推广了全纯函数和普通CR$ CR$函数的经典结果。限制复流形的实子流形(可能有CR$ CR$奇点),我们将全纯扩展的结果推广到以前只知道的CR$ CR$子流形的满邻域。本文是通过研究C - R - CR -奇点和子流形的显式构造而得到结论的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信