Zero-Mach Limit of the Viscous Compressible Magnetohydrodynamic Flows Inside a Perfectly Conducting Wall for All Time

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Qiangchang Ju, Zilai Li, Jianjun Xu
{"title":"Zero-Mach Limit of the Viscous Compressible Magnetohydrodynamic Flows Inside a Perfectly Conducting Wall for All Time","authors":"Qiangchang Ju,&nbsp;Zilai Li,&nbsp;Jianjun Xu","doi":"10.1111/sapm.70066","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We consider the two-dimensional viscous compressible magnetohydrodynamic flows inside a perfectly conducting wall with a nonslip boundary condition. By virtue of the exponential decay of strong solutions to the incompressible system, we establish all-time existence of strong solutions to the initial-boundary value problem for slightly compressible magnetohydrodynamic flows without smallness restrictions on the initial velocity and magnetic field. Furthermore, we prove that solutions of the compressible system uniformly converge to that of the incompressible system for all time as the Mach number approaches zero.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 5","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70066","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the two-dimensional viscous compressible magnetohydrodynamic flows inside a perfectly conducting wall with a nonslip boundary condition. By virtue of the exponential decay of strong solutions to the incompressible system, we establish all-time existence of strong solutions to the initial-boundary value problem for slightly compressible magnetohydrodynamic flows without smallness restrictions on the initial velocity and magnetic field. Furthermore, we prove that solutions of the compressible system uniformly converge to that of the incompressible system for all time as the Mach number approaches zero.

完全导电壁内粘性可压缩磁流体力学流动的零马赫极限
考虑具有防滑边界条件的完全导电壁面内二维粘性可压缩磁流体力学流动。利用不可压缩系统强解的指数衰减,建立了对初速度和磁场没有小限制的微可压缩磁流体动力流初边值问题强解的全时存在性。进一步证明了当马赫数趋于零时,可压缩系统的解始终一致收敛于不可压缩系统的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信