Shan Zhang, David Julian McClements, Ruofan Zheng, Xiao Yu, Zhida Sun, Bijun Xie, Yashu Chen, Qianchun Deng
{"title":"A promising perspective to boost the utilizability of oil bodies: Moderate regulation and modification of interface","authors":"Shan Zhang, David Julian McClements, Ruofan Zheng, Xiao Yu, Zhida Sun, Bijun Xie, Yashu Chen, Qianchun Deng","doi":"10.1111/1541-4337.70145","DOIUrl":null,"url":null,"abstract":"<p>Oil bodies (OBs), as natural oil storage organelles, can be obtained and utilized directly by simple extraction, thereby satisfying consumer demand for plant-derived green foods. The unique topological structure of the phospholipid–protein membrane renders OBs controllable and resistant to environmental stres, demonstrating their promising prospects for applications. As natural self-assemblies, the nutrient distribution, composition, and structural characteristics of OBs can be modified in multiple ways, including the genetic improvement and various processing techniques, to meet diverse application requirements. Generally, the utilization of OBs (e.g., processing stability, emulsifying, digestion, etc.) is closely related to their interfacial properties, but the associated studies have not been systematically reviewed. In this paper, we systematically review the structural and interfacial characteristics of OBs for the first time, encompassing their biosynthetic pathways and the structure-function relationship critical to their processability and bioavailability In particular, targeted improvement methods were also discussed. The underlying mechanisms of the physicochemical stability of OBs were primarily related to the interfacial modulation, including linkages between density, charge, and the number of protein–phospholipid salt bridges, as well as the quantity and structure of extrinsic proteins. The membrane compactness, enzyme binding sites, and aggregation of OBs in gastrointestinal tract significantly impact their digestion and subsequent metabolic fate. In summary, moderate interfacial modification, by altering the interactions between membrane components and retaining some extrinsic proteins, may be a promising approach to boost the stability and functionality of OBs.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 3","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Reviews in Food Science and Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1541-4337.70145","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oil bodies (OBs), as natural oil storage organelles, can be obtained and utilized directly by simple extraction, thereby satisfying consumer demand for plant-derived green foods. The unique topological structure of the phospholipid–protein membrane renders OBs controllable and resistant to environmental stres, demonstrating their promising prospects for applications. As natural self-assemblies, the nutrient distribution, composition, and structural characteristics of OBs can be modified in multiple ways, including the genetic improvement and various processing techniques, to meet diverse application requirements. Generally, the utilization of OBs (e.g., processing stability, emulsifying, digestion, etc.) is closely related to their interfacial properties, but the associated studies have not been systematically reviewed. In this paper, we systematically review the structural and interfacial characteristics of OBs for the first time, encompassing their biosynthetic pathways and the structure-function relationship critical to their processability and bioavailability In particular, targeted improvement methods were also discussed. The underlying mechanisms of the physicochemical stability of OBs were primarily related to the interfacial modulation, including linkages between density, charge, and the number of protein–phospholipid salt bridges, as well as the quantity and structure of extrinsic proteins. The membrane compactness, enzyme binding sites, and aggregation of OBs in gastrointestinal tract significantly impact their digestion and subsequent metabolic fate. In summary, moderate interfacial modification, by altering the interactions between membrane components and retaining some extrinsic proteins, may be a promising approach to boost the stability and functionality of OBs.
期刊介绍:
Comprehensive Reviews in Food Science and Food Safety (CRFSFS) is an online peer-reviewed journal established in 2002. It aims to provide scientists with unique and comprehensive reviews covering various aspects of food science and technology.
CRFSFS publishes in-depth reviews addressing the chemical, microbiological, physical, sensory, and nutritional properties of foods, as well as food processing, engineering, analytical methods, and packaging. Manuscripts should contribute new insights and recommendations to the scientific knowledge on the topic. The journal prioritizes recent developments and encourages critical assessment of experimental design and interpretation of results.
Topics related to food safety, such as preventive controls, ingredient contaminants, storage, food authenticity, and adulteration, are considered. Reviews on food hazards must demonstrate validity and reliability in real food systems, not just in model systems. Additionally, reviews on nutritional properties should provide a realistic perspective on how foods influence health, considering processing and storage effects on bioactivity.
The journal also accepts reviews on consumer behavior, risk assessment, food regulations, and post-harvest physiology. Authors are encouraged to consult the Editor in Chief before submission to ensure topic suitability. Systematic reviews and meta-analyses on analytical and sensory methods, quality control, and food safety approaches are welcomed, with authors advised to follow IFIS Good review practice guidelines.