Bernoulli Collocation Method for Solving Time-Fractional Diffusion Equation Arising in Physics

IF 1.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Jalil Rashidinia, Arefeh Momeni
{"title":"Bernoulli Collocation Method for Solving Time-Fractional Diffusion Equation Arising in Physics","authors":"Jalil Rashidinia,&nbsp;Arefeh Momeni","doi":"10.1002/jnm.70052","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This research presents an effective spectral collocation scheme based on orthogonalized Bernoulli polynomials for solving the time-fractional diffusion equation (TFDE). To provide a numerical method, we consider the Bernoulli polynomials and estimate the derivatives as well as the Caputo fractional derivative by operational matrices. By collocating the discretized equations, we obtain a system of algebraic equations. By solving this system, we obtain the approximate solution. The advantages of the suggested method are its low computational cost and exponential convergence. Also, the convergence analysis of the presented method is discussed. Finally, we present several test problems to demonstrate the capability of the proposed method. The obtained results are compared with the existing methods in the literature.</p>\n </div>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"38 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.70052","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This research presents an effective spectral collocation scheme based on orthogonalized Bernoulli polynomials for solving the time-fractional diffusion equation (TFDE). To provide a numerical method, we consider the Bernoulli polynomials and estimate the derivatives as well as the Caputo fractional derivative by operational matrices. By collocating the discretized equations, we obtain a system of algebraic equations. By solving this system, we obtain the approximate solution. The advantages of the suggested method are its low computational cost and exponential convergence. Also, the convergence analysis of the presented method is discussed. Finally, we present several test problems to demonstrate the capability of the proposed method. The obtained results are compared with the existing methods in the literature.

求解物理中时间分数扩散方程的伯努利配点法
提出了一种有效的基于正交伯努利多项式的谱配置方案,用于求解时间分数阶扩散方程。为了提供一种数值方法,我们考虑伯努利多项式,并利用运算矩阵估计其导数和卡普托分数阶导数。通过对离散方程进行配置,得到了一个代数方程组。通过求解这个方程组,我们得到了近似解。该方法的优点是计算成本低,具有指数收敛性。并对该方法的收敛性进行了分析。最后,我们提出了几个测试问题来证明所提出方法的能力。所得结果与文献中已有的方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
6.20%
发文量
101
审稿时长
>12 weeks
期刊介绍: Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models. The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics. Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信