Categorifying non-commutative deformations

IF 1 2区 数学 Q1 MATHEMATICS
Agnieszka Bodzenta, Alexey Bondal
{"title":"Categorifying non-commutative deformations","authors":"Agnieszka Bodzenta,&nbsp;Alexey Bondal","doi":"10.1112/jlms.70176","DOIUrl":null,"url":null,"abstract":"<p>We define the functor <span></span><math>\n <semantics>\n <msub>\n <mi>ncDef</mi>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>Z</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>Z</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </msub>\n <annotation>$\\textrm {ncDef}_{(Z_1,\\ldots ,Z_n)}$</annotation>\n </semantics></math> of non-commutative deformations of an <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-tuple of objects in an arbitrary <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$\\mathbb {k}$</annotation>\n </semantics></math>-linear abelian category <span></span><math>\n <semantics>\n <mi>Z</mi>\n <annotation>$\\mathcal {Z}$</annotation>\n </semantics></math>. In our categorified approach, we view the underlying spaces of infinitesimal flat deformations as Deligne finite categories, that is, finite length abelian categories admitting projective generators, with <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> isomorphism classes of simple objects. More generally, we define the functor <span></span><math>\n <semantics>\n <msub>\n <mi>ncDef</mi>\n <mi>ζ</mi>\n </msub>\n <annotation>$\\textrm {ncDef}_{\\zeta }$</annotation>\n </semantics></math> of non-commutative deformations of an exact functor <span></span><math>\n <semantics>\n <mrow>\n <mi>ζ</mi>\n <mo>:</mo>\n <mi>A</mi>\n <mo>→</mo>\n <mi>Z</mi>\n </mrow>\n <annotation>$\\zeta \\colon \\mathcal {A} \\rightarrow \\mathcal {Z}$</annotation>\n </semantics></math> of abelian categories. Here the role of an infinitesimal non-commutative thickening of <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>${\\mathcal {A}}$</annotation>\n </semantics></math> is played by an abelian category <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>${\\mathcal {B}}$</annotation>\n </semantics></math> containing <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>${\\mathcal {A}}$</annotation>\n </semantics></math> and such that <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>${\\mathcal {A}}$</annotation>\n </semantics></math> generates <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>${\\mathcal {B}}$</annotation>\n </semantics></math> by extensions. The functor <span></span><math>\n <semantics>\n <msub>\n <mi>ncDef</mi>\n <mi>ζ</mi>\n </msub>\n <annotation>$\\mathop {\\textrm {ncDef}}\\nolimits _\\zeta$</annotation>\n </semantics></math> assigns to such <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>${\\mathcal {B}}$</annotation>\n </semantics></math> the set of equivalence classes of exact functors <span></span><math>\n <semantics>\n <mrow>\n <mi>B</mi>\n <mo>→</mo>\n <mi>Z</mi>\n </mrow>\n <annotation>${\\mathcal {B}}\\rightarrow {\\mathcal {Z}}$</annotation>\n </semantics></math> which extend <span></span><math>\n <semantics>\n <mi>ζ</mi>\n <annotation>$\\zeta$</annotation>\n </semantics></math>. We prove that an exact functor on an infinitesimal extension is fully faithful if and only if it is fully faithful on the first infinitesimal neighborhood. We show that if <span></span><math>\n <semantics>\n <mi>ζ</mi>\n <annotation>$\\zeta$</annotation>\n </semantics></math> is fully faithful, then the functor <span></span><math>\n <semantics>\n <msub>\n <mi>ncDef</mi>\n <mi>ζ</mi>\n </msub>\n <annotation>$\\textrm {ncDef}_{\\zeta }$</annotation>\n </semantics></math> is ind-represented by the extension closure of the essential image of <span></span><math>\n <semantics>\n <mi>ζ</mi>\n <annotation>$\\zeta$</annotation>\n </semantics></math>. We prove that for a flopping contraction <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>:</mo>\n <mi>X</mi>\n <mo>→</mo>\n <mi>Y</mi>\n </mrow>\n <annotation>$f\\colon X\\rightarrow Y$</annotation>\n </semantics></math> with the fiber over a closed point <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mo>=</mo>\n <msubsup>\n <mo>⋃</mo>\n <mrow>\n <mi>i</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <mi>n</mi>\n </msubsup>\n <msub>\n <mi>C</mi>\n <mi>i</mi>\n </msub>\n </mrow>\n <annotation>$C = \\bigcup _{i=1}^n C_i$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n <mi>i</mi>\n </msub>\n <mi>s</mi>\n </mrow>\n <annotation>$C_i{\\rm s}$</annotation>\n </semantics></math> are irreducible curves, <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <msub>\n <mi>O</mi>\n <msub>\n <mi>C</mi>\n <mi>i</mi>\n </msub>\n </msub>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace \\mathcal {O}_{C_i}(-1)\\rbrace$</annotation>\n </semantics></math> is the set of simple objects in the null-category for <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math>. We conclude that the null-category ind-represents the functor <span></span><math>\n <semantics>\n <msub>\n <mi>ncDef</mi>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>O</mi>\n <msub>\n <mi>C</mi>\n <mn>1</mn>\n </msub>\n </msub>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>O</mi>\n <msub>\n <mi>C</mi>\n <mi>n</mi>\n </msub>\n </msub>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n </msub>\n <annotation>$\\textrm {ncDef}_{(\\mathcal {O}_{C_1}(-1),\\ldots ,\\mathcal {O}_{C_n}(-1))}$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 5","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70176","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We define the functor ncDef ( Z 1 , , Z n ) $\textrm {ncDef}_{(Z_1,\ldots ,Z_n)}$ of non-commutative deformations of an n $n$ -tuple of objects in an arbitrary k $\mathbb {k}$ -linear abelian category Z $\mathcal {Z}$ . In our categorified approach, we view the underlying spaces of infinitesimal flat deformations as Deligne finite categories, that is, finite length abelian categories admitting projective generators, with n $n$ isomorphism classes of simple objects. More generally, we define the functor ncDef ζ $\textrm {ncDef}_{\zeta }$ of non-commutative deformations of an exact functor ζ : A Z $\zeta \colon \mathcal {A} \rightarrow \mathcal {Z}$ of abelian categories. Here the role of an infinitesimal non-commutative thickening of A ${\mathcal {A}}$ is played by an abelian category B ${\mathcal {B}}$ containing A ${\mathcal {A}}$ and such that A ${\mathcal {A}}$ generates B ${\mathcal {B}}$ by extensions. The functor ncDef ζ $\mathop {\textrm {ncDef}}\nolimits _\zeta$ assigns to such B ${\mathcal {B}}$ the set of equivalence classes of exact functors B Z ${\mathcal {B}}\rightarrow {\mathcal {Z}}$ which extend ζ $\zeta$ . We prove that an exact functor on an infinitesimal extension is fully faithful if and only if it is fully faithful on the first infinitesimal neighborhood. We show that if ζ $\zeta$ is fully faithful, then the functor ncDef ζ $\textrm {ncDef}_{\zeta }$ is ind-represented by the extension closure of the essential image of ζ $\zeta$ . We prove that for a flopping contraction f : X Y $f\colon X\rightarrow Y$ with the fiber over a closed point C = i = 1 n C i $C = \bigcup _{i=1}^n C_i$ , where C i s $C_i{\rm s}$ are irreducible curves, { O C i ( 1 ) } $\lbrace \mathcal {O}_{C_i}(-1)\rbrace$ is the set of simple objects in the null-category for f $f$ . We conclude that the null-category ind-represents the functor ncDef ( O C 1 ( 1 ) , , O C n ( 1 ) ) $\textrm {ncDef}_{(\mathcal {O}_{C_1}(-1),\ldots ,\mathcal {O}_{C_n}(-1))}$ .

分类非交换变形
定义函子ncDef (z1,…,Z (n) $\textrm {ncDef}_{(Z_1,\ldots ,Z_n)}$一个n ($n$)元组在任意k ($\mathbb {k}$)线性阿贝尔范畴Z ($\mathcal {Z}$)中的非交换变形. 在我们的分类方法中,我们将无限小平面变形的基础空间视为Deligne有限范畴,即允许射影生成的有限长度阿贝尔范畴,具有n个$n$简单对象的同构类。更一般地,我们定义了阿贝尔范畴的精确函子ζ的非交换变形的函子ncDef ζ $\textrm {ncDef}_{\zeta }$: A→Z $\zeta \colon \mathcal {A} \rightarrow \mathcal {Z}$。这里A ${\mathcal {A}}$的无穷小非交换增厚的作用是由一个包含A ${\mathcal {A}}$的阿贝尔范畴B ${\mathcal {B}}$扮演的,使得A ${\mathcal {A}}$生成B ${\mathcal {B}}$扩展。函子ncDef ζ $\mathop {\textrm {ncDef}}\nolimits _\zeta$将扩展ζ $\zeta$的精确函子B→Z ${\mathcal {B}}\rightarrow {\mathcal {Z}}$的等价类集赋给这样的B ${\mathcal {B}}$。证明无穷小扩展上的精确函子是完全忠实的当且仅当它在第一个无穷小邻域上是完全忠实的。我们证明如果ζ $\zeta$是完全忠实的,那么函子ncDef ζ $\textrm {ncDef}_{\zeta }$确实是由ζ $\zeta$的本质像的扩展闭包表示的。我们证明了对于一个翻转收缩f:X→Y $f\colon X\rightarrow Y$光纤在闭合点C =∈i = 1 n c1上$C = \bigcup _{i=1}^n C_i$,其中ci = $C_i{\rm s}$为不可约曲线,{ O C i(−1) }$\lbrace \mathcal {O}_{C_i}(-1)\rbrace$是f $f$的null类别中的一组简单对象。 我们得出空范畴ind-表示函子ncDef (O c1 (- 1),... ,O C n(−1))$\textrm {ncDef}_ (\mathcal {O}_{C_1}(-1),\ldots,\mathcal {O}_{C_n}(-1))}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信