Spectral Properties of the Zeon Combinatorial Laplacian: Cycles in Finite Graphs

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
G. Stacey Staples
{"title":"Spectral Properties of the Zeon Combinatorial Laplacian: Cycles in Finite Graphs","authors":"G. Stacey Staples","doi":"10.1007/s10773-025-06032-3","DOIUrl":null,"url":null,"abstract":"<div><p>Given a finite simple graph <i>G</i> on <i>m</i> vertices, the zeon combinatorial Laplacian <span>\\(\\Lambda \\)</span> of <i>G</i> is an <span>\\(m\\times m\\)</span> matrix having entries in the complex zeon algebra <span>\\(\\mathbb {C}\\mathfrak {Z}\\)</span>. It is shown here that if the graph has a unique vertex <i>v</i> of degree <i>k</i>, then the Laplacian has a unique zeon eigenvalue <span>\\(\\lambda \\)</span> whose scalar part is <i>k</i>. Moreover, the canonical expansion of the nilpotent (dual) part of <span>\\(\\lambda \\)</span> counts the cycles based at vertex <i>v</i> in <i>G</i>. With an appropriate generalization of the zeon combinatorial Laplacian of <i>G</i>, all cycles in <i>G</i> are counted by <span>\\(\\Lambda \\)</span>. Moreover when a generalized zeon combinatorial Laplacian <span>\\(\\Lambda \\)</span> can be viewed as a self-adjoint operator on the <span>\\(\\mathbb {C}\\mathfrak {Z}\\)</span>-module of <i>m</i>-tuples of zeon elements, it can be interpreted as a quantum random variable whose values reveal the cycle structure of the underlying graph.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 6","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-06032-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Given a finite simple graph G on m vertices, the zeon combinatorial Laplacian \(\Lambda \) of G is an \(m\times m\) matrix having entries in the complex zeon algebra \(\mathbb {C}\mathfrak {Z}\). It is shown here that if the graph has a unique vertex v of degree k, then the Laplacian has a unique zeon eigenvalue \(\lambda \) whose scalar part is k. Moreover, the canonical expansion of the nilpotent (dual) part of \(\lambda \) counts the cycles based at vertex v in G. With an appropriate generalization of the zeon combinatorial Laplacian of G, all cycles in G are counted by \(\Lambda \). Moreover when a generalized zeon combinatorial Laplacian \(\Lambda \) can be viewed as a self-adjoint operator on the \(\mathbb {C}\mathfrak {Z}\)-module of m-tuples of zeon elements, it can be interpreted as a quantum random variable whose values reveal the cycle structure of the underlying graph.

Zeon组合拉普拉斯算子的谱性质:有限图中的环
给定一个有m个顶点的有限简单图G, G的zeon组合拉普拉斯算子\(\Lambda \)是一个具有复数zeon代数\(\mathbb {C}\mathfrak {Z}\)项的\(m\times m\)矩阵。如果图有一个唯一的k度顶点v,则拉普拉斯算子有一个唯一的zeon特征值\(\lambda \),其标量部分为k。此外,\(\lambda \)的幂零(对偶)部分的正则展开计算了G中基于顶点v的圈数。通过对G的zeon组合拉普拉斯算子的适当推广,G中的所有圈都被\(\Lambda \)计算。此外,当广义zeon组合拉普拉斯算子\(\Lambda \)可以看作是zeon元素m元组的\(\mathbb {C}\mathfrak {Z}\) -模上的自伴随算子时,它可以被解释为量子随机变量,其值揭示了底层图的循环结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信