Categories of Orthosets and Adjointable Maps

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Jan Paseka, Thomas Vetterlein
{"title":"Categories of Orthosets and Adjointable Maps","authors":"Jan Paseka,&nbsp;Thomas Vetterlein","doi":"10.1007/s10773-025-06031-4","DOIUrl":null,"url":null,"abstract":"<div><p>An orthoset is a non-empty set together with a symmetric and irreflexive binary relation <span>\\(\\perp \\)</span>, called the orthogonality relation. An orthoset with 0 is an orthoset augmented with an additional element 0, called falsity, which is orthogonal to every element. The collection of subspaces of a Hilbert space that are spanned by a single vector provides a motivating example. We say that a map <span>\\(f :X \\rightarrow Y\\)</span> between orthosets with 0 possesses the adjoint <span>\\(g :Y \\rightarrow X\\)</span> if, for any <span>\\(x \\in X\\)</span> and <span>\\(y \\in Y\\)</span>, <span>\\(f(x) \\perp y\\)</span> if and only if <span>\\(x \\perp g(y)\\)</span>. We call <i>f</i> in this case adjointable. For instance, any bounded linear map between Hilbert spaces induces a map with this property. We discuss in this paper adjointability from several perspectives and we put a particular focus on maps preserving the orthogonality relation. We moreover investigate the category <span>\\(\\mathcal{O}\\mathcal{S}\\)</span> of all orthosets with 0 and adjointable maps between them. We especially focus on the full subcategory <span>\\(\\mathcalligra {i}\\mathcal{O}\\mathcal{S}\\)</span> of irredundant orthosets with 0. <span>\\(\\mathcalligra {i}\\mathcal{O}\\mathcal{S}\\)</span> can be made into a dagger category, the dagger of a morphism being its unique adjoint. <span>\\(\\mathcalligra {i}\\mathcal{O}\\mathcal{S}\\)</span> contains dagger subcategories of various sorts and provides in particular a framework for the investigation of Hilbert spaces.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 6","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10773-025-06031-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-06031-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

An orthoset is a non-empty set together with a symmetric and irreflexive binary relation \(\perp \), called the orthogonality relation. An orthoset with 0 is an orthoset augmented with an additional element 0, called falsity, which is orthogonal to every element. The collection of subspaces of a Hilbert space that are spanned by a single vector provides a motivating example. We say that a map \(f :X \rightarrow Y\) between orthosets with 0 possesses the adjoint \(g :Y \rightarrow X\) if, for any \(x \in X\) and \(y \in Y\), \(f(x) \perp y\) if and only if \(x \perp g(y)\). We call f in this case adjointable. For instance, any bounded linear map between Hilbert spaces induces a map with this property. We discuss in this paper adjointability from several perspectives and we put a particular focus on maps preserving the orthogonality relation. We moreover investigate the category \(\mathcal{O}\mathcal{S}\) of all orthosets with 0 and adjointable maps between them. We especially focus on the full subcategory \(\mathcalligra {i}\mathcal{O}\mathcal{S}\) of irredundant orthosets with 0. \(\mathcalligra {i}\mathcal{O}\mathcal{S}\) can be made into a dagger category, the dagger of a morphism being its unique adjoint. \(\mathcalligra {i}\mathcal{O}\mathcal{S}\) contains dagger subcategories of various sorts and provides in particular a framework for the investigation of Hilbert spaces.

正交集和可伴映射的范畴
一个正交集是一个非空集合和一个对称的非自反的二元关系\(\perp \),称为正交关系。带0的正交集是一个正交集增广了一个额外的元素0,称为伪性,它与每个元素正交。由单个向量张成的希尔伯特空间的子空间集合提供了一个鼓舞人心的例子。我们说,具有0的正射影集之间的映射\(f :X \rightarrow Y\)具有伴随的\(g :Y \rightarrow X\) if,对于任何\(x \in X\)和\(y \in Y\), \(f(x) \perp y\)当且仅当\(x \perp g(y)\)。在这种情况下我们称f为可导的。例如,希尔伯特空间之间的任何有界线性映射都归纳出一个具有此性质的映射。本文从多个角度讨论了可伴性,并重点讨论了保留正交关系的映射。我们进一步研究了所有带0的正置集及其间可伴映射的\(\mathcal{O}\mathcal{S}\)范畴。我们特别关注具有0的无冗余正交集的完整子范畴\(\mathcalligra {i}\mathcal{O}\mathcal{S}\)。\(\mathcalligra {i}\mathcal{O}\mathcal{S}\)可以被归为匕首类,一个态射的匕首是它唯一的伴随。\(\mathcalligra {i}\mathcal{O}\mathcal{S}\)包含各种各样的匕首子范畴,并特别为研究希尔伯特空间提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信