T. N. Anh Nguyen, Q. N. Pham, K. T. Do, H. K. Vu, H. N. Pham, D. T. Tran, H. M. Do
{"title":"The study of the effect of device downsizing on 1/f noise in deep submicron magnetic tunnel junctions","authors":"T. N. Anh Nguyen, Q. N. Pham, K. T. Do, H. K. Vu, H. N. Pham, D. T. Tran, H. M. Do","doi":"10.1007/s00339-025-08630-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, nanoscale MgO magnetic tunnel junctions (MTJs) with an orthogonal magnetization structure between the free and pinned layers and various junction sizes were fabricated, and their tunnel magnetoresistance (TMR) ratio, resistance-area (RA) product, and low-frequency noise (LFN) behavior were experimentally investigated thoroughly. The circular MTJs with various diameters (80–400 nm) show high TMR ratios of greater than 100% at room temperature (RT) with relatively low RA in the range of 2.8–4.4 Ωµm<sup>2</sup>. We found that the noise power spectral density (PSD) as a function of d.c. bias voltage (<i>V</i><sub>bias</sub>) and perpendicular d.c. bias magnetic field (<i>H</i><sub>DC</sub>) in all junction sizes exhibits 1/<i>f</i>-noise behavior within a wide investigated frequency range from 5 Hz up to 10 kHz. The bias voltage and magnetic field-dependent LFN indicated that the 1/<i>f</i> noise of the MTJs has both electric and magnetic origins. The results show that though the TMR ratio and RA product are size-independent, the Hooge parameter for the parallel (P) state (<i>α</i><sub>P</sub>) is strongly dependent on the MTJ size, and its values decrease with decreasing MTJ size, suggesting the reduction of electronic 1/<i>f</i> noise as the MTJ size shrinks. This is the first experimental report on the size dependency of electronic 1/<i>f</i> noise in nano-sized MTJs. The results may open a new approach for reducing not only magnetic but also electronic 1/<i>f</i> noises in MTJs by downscaling, thereby increasing the sensitivity of MTJ nanosensors.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 6","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-025-08630-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, nanoscale MgO magnetic tunnel junctions (MTJs) with an orthogonal magnetization structure between the free and pinned layers and various junction sizes were fabricated, and their tunnel magnetoresistance (TMR) ratio, resistance-area (RA) product, and low-frequency noise (LFN) behavior were experimentally investigated thoroughly. The circular MTJs with various diameters (80–400 nm) show high TMR ratios of greater than 100% at room temperature (RT) with relatively low RA in the range of 2.8–4.4 Ωµm2. We found that the noise power spectral density (PSD) as a function of d.c. bias voltage (Vbias) and perpendicular d.c. bias magnetic field (HDC) in all junction sizes exhibits 1/f-noise behavior within a wide investigated frequency range from 5 Hz up to 10 kHz. The bias voltage and magnetic field-dependent LFN indicated that the 1/f noise of the MTJs has both electric and magnetic origins. The results show that though the TMR ratio and RA product are size-independent, the Hooge parameter for the parallel (P) state (αP) is strongly dependent on the MTJ size, and its values decrease with decreasing MTJ size, suggesting the reduction of electronic 1/f noise as the MTJ size shrinks. This is the first experimental report on the size dependency of electronic 1/f noise in nano-sized MTJs. The results may open a new approach for reducing not only magnetic but also electronic 1/f noises in MTJs by downscaling, thereby increasing the sensitivity of MTJ nanosensors.
期刊介绍:
Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.