M. Astaschov, S. Bhagvati, S. Böser, M. J. Brandsema, R. Cabral, C. Claessens, L. de Viveiros, S. Enomoto, D. Fenner, M. Fertl, J. A. Formaggio, B. T. Foust, J. K. Gaison, P. Harmston, K. M. Heeger, M. B. Hüneborn, X. Huyan, A. M. Jones, B. J. P. Jones, E. Karim, K. Kazkaz, P. Kern, M. Li, A. Lindman, C.-Y. Liu, A. Marsteller, C. Matthé, R. Mohiuddin, B. Monreal, B. Mucogllava, R. Mueller, A. Negi, J. A. Nikkel, N. S. Oblath, M. Oueslati, J. I. Peña, W. Pettus, R. Reimann, A. L. Reine, R. G. H. Robertson, D. Rosa De Jesús, L. Saldaña, P. L. Slocum, F. Spanier, J. Stachurska, Y.-H. Sun, P. T. Surukuchi, A. B. Telles, F. Thomas, L. A. Thorne, T. Thümmler, W. Van De Pontseele, B. A. VanDevender, T. E. Weiss, M. Wynne, A. Ziegler, (Project 8 Collaboration)
{"title":"Calorimetric wire detector for measurement of atomic hydrogen beams","authors":"M. Astaschov, S. Bhagvati, S. Böser, M. J. Brandsema, R. Cabral, C. Claessens, L. de Viveiros, S. Enomoto, D. Fenner, M. Fertl, J. A. Formaggio, B. T. Foust, J. K. Gaison, P. Harmston, K. M. Heeger, M. B. Hüneborn, X. Huyan, A. M. Jones, B. J. P. Jones, E. Karim, K. Kazkaz, P. Kern, M. Li, A. Lindman, C.-Y. Liu, A. Marsteller, C. Matthé, R. Mohiuddin, B. Monreal, B. Mucogllava, R. Mueller, A. Negi, J. A. Nikkel, N. S. Oblath, M. Oueslati, J. I. Peña, W. Pettus, R. Reimann, A. L. Reine, R. G. H. Robertson, D. Rosa De Jesús, L. Saldaña, P. L. Slocum, F. Spanier, J. Stachurska, Y.-H. Sun, P. T. Surukuchi, A. B. Telles, F. Thomas, L. A. Thorne, T. Thümmler, W. Van De Pontseele, B. A. VanDevender, T. E. Weiss, M. Wynne, A. Ziegler, (Project 8 Collaboration)","doi":"10.1140/epjd/s10053-025-00987-y","DOIUrl":null,"url":null,"abstract":"<p>A calorimetric detector for minimally disruptive measurements of atomic hydrogen beams is described. The calorimeter measures heat released by the recombination of hydrogen atoms into molecules on a thin wire. As a demonstration, the angular distribution of a beam with a peak intensity of <span>\\(\\approx 10^{16} \\,{\\textrm{atoms}}/{(\\textrm{cm}^2 \\textrm{s})}\\)</span> is measured by translating the wire across the beam. The data agree well with an analytic model of the beam from the thermal hydrogen atom source. Using the beam shape model, the relative intensity of the beam can be determined to 5% precision or better at any angle.</p>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"79 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjd/s10053-025-00987-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal D","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjd/s10053-025-00987-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
A calorimetric detector for minimally disruptive measurements of atomic hydrogen beams is described. The calorimeter measures heat released by the recombination of hydrogen atoms into molecules on a thin wire. As a demonstration, the angular distribution of a beam with a peak intensity of \(\approx 10^{16} \,{\textrm{atoms}}/{(\textrm{cm}^2 \textrm{s})}\) is measured by translating the wire across the beam. The data agree well with an analytic model of the beam from the thermal hydrogen atom source. Using the beam shape model, the relative intensity of the beam can be determined to 5% precision or better at any angle.
描述了一种用于原子氢束最小破坏性测量的量热检测器。量热计测量氢原子在细丝上重新组合成分子时释放的热量。作为一个演示,通过在梁上平移导线来测量峰值强度为\(\approx 10^{16} \,{\textrm{atoms}}/{(\textrm{cm}^2 \textrm{s})}\)的梁的角分布。所得数据与热氢原子源光束的解析模型吻合较好。利用梁形模型,可以确定梁的相对强度为5% precision or better at any angle.
期刊介绍:
The European Physical Journal D (EPJ D) presents new and original research results in:
Atomic Physics;
Molecular Physics and Chemical Physics;
Atomic and Molecular Collisions;
Clusters and Nanostructures;
Plasma Physics;
Laser Cooling and Quantum Gas;
Nonlinear Dynamics;
Optical Physics;
Quantum Optics and Quantum Information;
Ultraintense and Ultrashort Laser Fields.
The range of topics covered in these areas is extensive, from Molecular Interaction and Reactivity to Spectroscopy and Thermodynamics of Clusters, from Atomic Optics to Bose-Einstein Condensation to Femtochemistry.