{"title":"In-Memory Computing Accelerator for Iterative Linear Algebra Solvers","authors":"Rui Liu;Zerun Li;Xiaoyu Zhang;Xiaoming Chen;Yinhe Han;Minghua Tang","doi":"10.1109/LCA.2025.3563365","DOIUrl":null,"url":null,"abstract":"Iterative linear solvers are a crucial kernel in many numerical analysis problems. The performance and energy efficiency of iterative solvers based on traditional architectures are severely constrained by the memory wall bottleneck. Computing-in-memory (CIM) has the potential to enhance solving efficiency. Existing CIM architectures are mostly customized for specific algorithms and primarily focus on handling fixed-point operations, which makes them difficult to meet the demands of diverse and high-precision applications. In this work, we propose a CIM architecture that natively supports various iterative linear solvers based on floating-point operations. We develop a new instruction set for the accelerator, which can be flexibly combined to implement various iterative solvers. The evaluation results show that, compared with the GPU implementation, our accelerator achieves more than 10.1× speedup and 6.8× energy savings when executing different iterative solvers.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"24 1","pages":"161-164"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10972329/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Iterative linear solvers are a crucial kernel in many numerical analysis problems. The performance and energy efficiency of iterative solvers based on traditional architectures are severely constrained by the memory wall bottleneck. Computing-in-memory (CIM) has the potential to enhance solving efficiency. Existing CIM architectures are mostly customized for specific algorithms and primarily focus on handling fixed-point operations, which makes them difficult to meet the demands of diverse and high-precision applications. In this work, we propose a CIM architecture that natively supports various iterative linear solvers based on floating-point operations. We develop a new instruction set for the accelerator, which can be flexibly combined to implement various iterative solvers. The evaluation results show that, compared with the GPU implementation, our accelerator achieves more than 10.1× speedup and 6.8× energy savings when executing different iterative solvers.
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.