Cache and Near-Data Co-Design for Chiplets

IF 1.4 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Arteen Abrishami;Zhengrong Wang;Tony Nowatzki
{"title":"Cache and Near-Data Co-Design for Chiplets","authors":"Arteen Abrishami;Zhengrong Wang;Tony Nowatzki","doi":"10.1109/LCA.2025.3564535","DOIUrl":null,"url":null,"abstract":"Vendors are increasingly adopting chiplet-based designs to manage cost for large-scale multi-cores. While near-data computing, a paradigm involving offloading computation near where data is located in memory, has been studied in the context of monolithic chip designs – its applications to chiplets remain unexplored. In this letter, we explore how the paradigm extends to chiplets in a system where computation is offloaded to accelerators collocated within the last-level-cache structure. We explore both shared and private last-level-cache designs across a variety of different workloads, both large-scale graph computations and more regular-access workloads, in order to understand how to optimize the cache and topology design for near-data workloads. We find that with a mesh chiplet architecture with shared last-level-cache (LLC), near-data optimization can achieve an 8.70× speedup on graph workloads, providing an even greater benefit than in traditional systems.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"24 1","pages":"149-152"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10976599/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Vendors are increasingly adopting chiplet-based designs to manage cost for large-scale multi-cores. While near-data computing, a paradigm involving offloading computation near where data is located in memory, has been studied in the context of monolithic chip designs – its applications to chiplets remain unexplored. In this letter, we explore how the paradigm extends to chiplets in a system where computation is offloaded to accelerators collocated within the last-level-cache structure. We explore both shared and private last-level-cache designs across a variety of different workloads, both large-scale graph computations and more regular-access workloads, in order to understand how to optimize the cache and topology design for near-data workloads. We find that with a mesh chiplet architecture with shared last-level-cache (LLC), near-data optimization can achieve an 8.70× speedup on graph workloads, providing an even greater benefit than in traditional systems.
小芯片的缓存和近数据协同设计
供应商越来越多地采用基于芯片的设计来管理大规模多核的成本。虽然在单片芯片设计的背景下研究了近数据计算,一种涉及在内存中数据位置附近卸载计算的范式,但其在小芯片上的应用仍未探索。在这封信中,我们将探讨如何将范式扩展到系统中的小芯片,其中计算被卸载到最后一级缓存结构中并置的加速器。为了了解如何为近数据工作负载优化缓存和拓扑设计,我们探索了跨各种不同工作负载的共享和私有最后一级缓存设计,包括大规模图计算和更常规访问的工作负载。我们发现,使用具有共享最后一级缓存(LLC)的网格芯片架构,近数据优化可以在图形工作负载上实现8.70倍的加速,提供比传统系统更大的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Computer Architecture Letters
IEEE Computer Architecture Letters COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.60
自引率
4.30%
发文量
29
期刊介绍: IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信