WoperTM: Got Nacks? Use Them!

IF 1.4 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Víctor Nicolás-Conesa;Rubén Titos-Gil;Ricardo Fernández-Pascual;Manuel E. Acacio;Alberto Ros
{"title":"WoperTM: Got Nacks? Use Them!","authors":"Víctor Nicolás-Conesa;Rubén Titos-Gil;Ricardo Fernández-Pascual;Manuel E. Acacio;Alberto Ros","doi":"10.1109/LCA.2025.3565199","DOIUrl":null,"url":null,"abstract":"The simplicity of requester-wins has made it the preferred choice for conflict resolution in commercial implementations of Hardware Transactional Memory (HTM), which typically have relied on conventional locking to escape from conflict-induced livelocks. Prior work advocates for combining requester-wins and requester-loses to ensure progress for higher-priority transactions, yet it fails to take full advantage of the available features, namely, protocol support for <italic>nacks</i>. This paper introduces WoperTM, a dual-policy, best-effort HTM design that resolves conflicts using <italic>requester-loses</i> policy in the common case. Our key insight is that, since <italic>nacks</i> are required to support priorities in HTM, performance can be improved at nearly no extra cost by allowing regular transactions to benefit from requester-loses, instead of only those involving a high-priority transaction. Experimental results using gem5 and STAMP show that WoperTM can significantly reduce squashed work and improve execution times by 12% with respect to <italic>power transactions</i>, with negligible hardware overhead.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"24 1","pages":"157-160"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10979364/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The simplicity of requester-wins has made it the preferred choice for conflict resolution in commercial implementations of Hardware Transactional Memory (HTM), which typically have relied on conventional locking to escape from conflict-induced livelocks. Prior work advocates for combining requester-wins and requester-loses to ensure progress for higher-priority transactions, yet it fails to take full advantage of the available features, namely, protocol support for nacks. This paper introduces WoperTM, a dual-policy, best-effort HTM design that resolves conflicts using requester-loses policy in the common case. Our key insight is that, since nacks are required to support priorities in HTM, performance can be improved at nearly no extra cost by allowing regular transactions to benefit from requester-loses, instead of only those involving a high-priority transaction. Experimental results using gem5 and STAMP show that WoperTM can significantly reduce squashed work and improve execution times by 12% with respect to power transactions, with negligible hardware overhead.
有零食吗?使用它们!
请求者获胜的简单性使其成为硬件事务性内存(Hardware Transactional Memory, HTM)的商业实现中解决冲突的首选,后者通常依赖于传统的锁定来避免冲突引发的活动。先前的工作主张将请求者获胜和请求者失败结合起来,以确保高优先级事务的进展,但它未能充分利用可用的特性,即对nack的协议支持。本文介绍了WoperTM,这是一种双策略、尽力而为的HTM设计,在一般情况下使用请求者丢失策略来解决冲突。我们的关键见解是,由于需要在HTM中支持优先级,因此通过允许常规事务从请求者丢失中获益,而不仅仅是那些涉及高优先级事务的事务,可以在几乎没有额外成本的情况下提高性能。使用gem5和STAMP的实验结果表明,WoperTM可以显著减少压缩工作,并将执行时间提高12%,而硬件开销可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Computer Architecture Letters
IEEE Computer Architecture Letters COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.60
自引率
4.30%
发文量
29
期刊介绍: IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信