MixDiT: Accelerating Image Diffusion Transformer Inference With Mixed-Precision MX Quantization

IF 1.4 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Daeun Kim;Jinwoo Hwang;Changhun Oh;Jongse Park
{"title":"MixDiT: Accelerating Image Diffusion Transformer Inference With Mixed-Precision MX Quantization","authors":"Daeun Kim;Jinwoo Hwang;Changhun Oh;Jongse Park","doi":"10.1109/LCA.2025.3560786","DOIUrl":null,"url":null,"abstract":"<underline>Di</u>ffusion <underline>T</u>ransformer (DiT) has driven significant progress in image generation tasks. However, DiT inferencing is notoriously compute-intensive and incurs long latency even on datacenter-scale GPUs, primarily due to its iterative nature and heavy reliance on GEMM operations inherent to its encoder-based structure. To address the challenge, prior work has explored quantization, but achieving low-precision quantization for DiT inferencing with both high accuracy and substantial speedup remains an open problem. To this end, this paper proposes MixDiT, an algorithm-hardware co-designed acceleration solution that exploits mixed Microscaling (MX) formats to quantize DiT activation values. MixDiTquantizes the DiT activation tensors by selectively applying higher precision to magnitude-based outliers, which produce mixed-precision GEMM operations. To achieve tangible speedup from the mixed-precision arithmetic, we design a MixDiTaccelerator that enables precision-flexible multiplications and efficient MX precision conversions. Our experimental results show that MixDiTdelivers a speedup of 2.10–5.32× over RTX 3090, with no loss in FID.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"24 1","pages":"141-144"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10964526/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Diffusion Transformer (DiT) has driven significant progress in image generation tasks. However, DiT inferencing is notoriously compute-intensive and incurs long latency even on datacenter-scale GPUs, primarily due to its iterative nature and heavy reliance on GEMM operations inherent to its encoder-based structure. To address the challenge, prior work has explored quantization, but achieving low-precision quantization for DiT inferencing with both high accuracy and substantial speedup remains an open problem. To this end, this paper proposes MixDiT, an algorithm-hardware co-designed acceleration solution that exploits mixed Microscaling (MX) formats to quantize DiT activation values. MixDiTquantizes the DiT activation tensors by selectively applying higher precision to magnitude-based outliers, which produce mixed-precision GEMM operations. To achieve tangible speedup from the mixed-precision arithmetic, we design a MixDiTaccelerator that enables precision-flexible multiplications and efficient MX precision conversions. Our experimental results show that MixDiTdelivers a speedup of 2.10–5.32× over RTX 3090, with no loss in FID.
MixDiT:用混合精度MX量化加速图像扩散变压器推理
扩散转换器(Diffusion Transformer, DiT)在图像生成任务中取得了重大进展。然而,DiT推理是出了名的计算密集型,即使在数据中心规模的gpu上也会导致很长的延迟,这主要是由于它的迭代性质和对基于编码器的结构固有的gem操作的严重依赖。为了应对挑战,之前的工作已经探索了量化,但是实现低精度量化的DiT推理,同时具有高精度和显著的加速仍然是一个悬而未决的问题。为此,本文提出了MixDiT,这是一种算法-硬件协同设计的加速解决方案,它利用混合微缩放(MX)格式来量化DiT激活值。mixditx通过选择性地对基于震级的异常值应用更高精度来量化DiT激活张量,从而产生混合精度的GEMM操作。为了从混合精度算法中获得切实的加速,我们设计了一个MixDiTaccelerator,它可以实现精确灵活的乘法和高效的MX精度转换。我们的实验结果表明,mixdi比RTX 3090提供了2.10 - 5.32倍的加速,而FID没有损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Computer Architecture Letters
IEEE Computer Architecture Letters COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.60
自引率
4.30%
发文量
29
期刊介绍: IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信