Generic Multi-Output Spectral Representation Method for Uncertainty Propagation Analysis of Power System Dynamics

IF 6.1 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhaoyuan Wang;Siqi Bu
{"title":"Generic Multi-Output Spectral Representation Method for Uncertainty Propagation Analysis of Power System Dynamics","authors":"Zhaoyuan Wang;Siqi Bu","doi":"10.35833/MPCE.2024.000586","DOIUrl":null,"url":null,"abstract":"Realistic uncertainties of renewable energies and loads may possess complicated probability distributions and correlations, which are difficult to be characterized by standard probability density functions and hence challenge existing uncertainty propagation analysis (UPA) methods. Also, nonintrusive spectral representation (SR)-based UPA methods can only estimate system responses at each time point separately, which is time-consuming for analyzing power system dynamics. Thus, this paper proposes a generic multi-output SR (GMSR) method to effectively tackle the above limitations by developing the generic correlation transformation and multi-output structure. The effectiveness and superiority of GMSR in efficiency and accuracy are demonstrated by comparing it with existing SR methods.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 3","pages":"757-765"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10858609","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10858609/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Realistic uncertainties of renewable energies and loads may possess complicated probability distributions and correlations, which are difficult to be characterized by standard probability density functions and hence challenge existing uncertainty propagation analysis (UPA) methods. Also, nonintrusive spectral representation (SR)-based UPA methods can only estimate system responses at each time point separately, which is time-consuming for analyzing power system dynamics. Thus, this paper proposes a generic multi-output SR (GMSR) method to effectively tackle the above limitations by developing the generic correlation transformation and multi-output structure. The effectiveness and superiority of GMSR in efficiency and accuracy are demonstrated by comparing it with existing SR methods.
电力系统动力学不确定性传播分析的通用多输出谱表示方法
可再生能源和负荷的现实不确定性具有复杂的概率分布和相关性,难以用标准概率密度函数来表征,给现有的不确定性传播分析(UPA)方法带来了挑战。此外,基于非侵入式谱表示(SR)的UPA方法只能单独估计系统在每个时间点的响应,这对于分析电力系统的动力学非常耗时。因此,本文提出了一种通用多输出SR (GMSR)方法,通过发展通用相关变换和多输出结构,有效地解决了上述局限性。通过与现有遗传算法的比较,证明了遗传算法在效率和精度上的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Modern Power Systems and Clean Energy
Journal of Modern Power Systems and Clean Energy ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
12.30
自引率
14.30%
发文量
97
审稿时长
13 weeks
期刊介绍: Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信