Fault Detection, Classification, and Location Based on Empirical Wavelet Transform-Teager Energy Operator and ANN for Hybrid Transmission Lines in VSC-HVDC Systems
IF 6.1 1区 工程技术Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"Fault Detection, Classification, and Location Based on Empirical Wavelet Transform-Teager Energy Operator and ANN for Hybrid Transmission Lines in VSC-HVDC Systems","authors":"Jalal Sahebkar Farkhani;Özgür Çelik;Kaiqi Ma;Claus Leth Bak;Zhe Chen","doi":"10.35833/MPCE.2023.000925","DOIUrl":null,"url":null,"abstract":"Traditional protection methods are not suitable for hybrid (cable and overhead) transmission lines in voltage source converter based high-voltage direct current (VSC-HVDC) systems. Accordingly, this paper presents the robust fault detection, classification, and location based on the empirical wavelet transform-Teager energy operator (EWT-TEO) and artificial neural network (ANN) for hybrid transmission lines in VSC-HVDC systems. The operational scheme of the proposed protection method consists of two loops: ①an EWT-TEO based feature extraction loop, ② and an ANN-based fault detection, classification, and location loop. Under the proposed protection method, the voltage and current signals are decomposed into several sub-passbands with low and high frequencies using the empirical wavelet transform (EWT) method. The energy content extracted by the EWT is fed into the ANN for fault detection, classification, and location. Various faul<sup>t</sup> cases, including the high-impedance fault (HIF) as well as noises, are performed to train the ANN with two hidden layers. The test system and signal decomposition are conducted by PSCAD/EMT-DC and MATLAB, respectively. The performance of the proposed protection method is compared with that of the traditional non-pilot traveling wave (TW) based protection method. The results confirm the high accuracy of the proposed protection method for hybrid transmission lines in VSC-HVDC systems, where a mean percentage error of approximately 0.1% is achieved.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 3","pages":"840-851"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747304","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10747304/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional protection methods are not suitable for hybrid (cable and overhead) transmission lines in voltage source converter based high-voltage direct current (VSC-HVDC) systems. Accordingly, this paper presents the robust fault detection, classification, and location based on the empirical wavelet transform-Teager energy operator (EWT-TEO) and artificial neural network (ANN) for hybrid transmission lines in VSC-HVDC systems. The operational scheme of the proposed protection method consists of two loops: ①an EWT-TEO based feature extraction loop, ② and an ANN-based fault detection, classification, and location loop. Under the proposed protection method, the voltage and current signals are decomposed into several sub-passbands with low and high frequencies using the empirical wavelet transform (EWT) method. The energy content extracted by the EWT is fed into the ANN for fault detection, classification, and location. Various fault cases, including the high-impedance fault (HIF) as well as noises, are performed to train the ANN with two hidden layers. The test system and signal decomposition are conducted by PSCAD/EMT-DC and MATLAB, respectively. The performance of the proposed protection method is compared with that of the traditional non-pilot traveling wave (TW) based protection method. The results confirm the high accuracy of the proposed protection method for hybrid transmission lines in VSC-HVDC systems, where a mean percentage error of approximately 0.1% is achieved.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.