{"title":"Stability and Dynamic Analysis of PMSG-Based Wind Generation System Considering Torsional Oscillation and Virtual Inertia Control","authors":"Yizhuo Ma;Jin Xu;Guojie Li;Keyou Wang","doi":"10.35833/MPCE.2024.000573","DOIUrl":null,"url":null,"abstract":"Most permanent magnet synchronous generator (PMSG) based wind generation systems currently employ grid-following control, relying on a phase-locked loop (PLL) for grid connection. However, it leads to a lack of inertia support in the system. To address this, the virtual inertia control (VIC) is crucial for improvement, yet it introduces potential instability due to torsional oscillation interaction with PLL and low-frequency oscillations, which is an underexplored area. This paper presents a comprehensive analysis of the grid-connected PMSG-based wind generation system. It confirms the necessity of employing a full-order model for studying stability on the quasi-electromechanical timescale (QET) by a comparison with the reduced-order model. Then, a comprehensive modal analysis is conducted to analyze the effect of VIC parameters, shaft inertia time constant, PLL parameters, and torsional oscillation damping (TOD) controller gain on the interaction of QET oscillations under two typical control strategies. The occurrence of interaction and mode conversion is observed when the oscillation frequency and root loci of the torsional, PLL, and low-frequency oscillations are close. Finally, a theoretical analysis is validated via simulation verification in Simulink. These findings offer a valuable guidance for industrial PMSG applications considering VIC.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 3","pages":"852-864"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10719597","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10719597/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Most permanent magnet synchronous generator (PMSG) based wind generation systems currently employ grid-following control, relying on a phase-locked loop (PLL) for grid connection. However, it leads to a lack of inertia support in the system. To address this, the virtual inertia control (VIC) is crucial for improvement, yet it introduces potential instability due to torsional oscillation interaction with PLL and low-frequency oscillations, which is an underexplored area. This paper presents a comprehensive analysis of the grid-connected PMSG-based wind generation system. It confirms the necessity of employing a full-order model for studying stability on the quasi-electromechanical timescale (QET) by a comparison with the reduced-order model. Then, a comprehensive modal analysis is conducted to analyze the effect of VIC parameters, shaft inertia time constant, PLL parameters, and torsional oscillation damping (TOD) controller gain on the interaction of QET oscillations under two typical control strategies. The occurrence of interaction and mode conversion is observed when the oscillation frequency and root loci of the torsional, PLL, and low-frequency oscillations are close. Finally, a theoretical analysis is validated via simulation verification in Simulink. These findings offer a valuable guidance for industrial PMSG applications considering VIC.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.