Jiaxiang Hu;Weihao Hu;Di Cao;Jianjun Chen;Sayed Abulanwar;Mohammed K. Hassan;Zhe Chen;Frede Blaabjerg
{"title":"Robust Distribution System State Estimation Considering Anomalous Real-Time Measurements and Topology Change","authors":"Jiaxiang Hu;Weihao Hu;Di Cao;Jianjun Chen;Sayed Abulanwar;Mohammed K. Hassan;Zhe Chen;Frede Blaabjerg","doi":"10.35833/MPCE.2024.000683","DOIUrl":null,"url":null,"abstract":"This paper develops a physics-guided graph network to enhance the robustness of distribution system state estimation (DSSE) against anomalous real-time measurements, as well as a deep auto-encoder (DAE)-based detector and a Gaussian process-aided residual learning (GARL) to deal with challenges arising from topology changes. A global-scanning jumping knowledge network (GSJKN) is first designed to establish the regression rule between the measurement data and state variables. The structural information of distribution system (DS) and a global-scanning module are incorporated to guide the propagation of scarce measurements in the graph topology, contributing to valid estimation precision in sparsely measured DSs. To monitor the topology changes of the network, a DAE network is employed to learn an efficient representation of the measurements of the system under a certain topology, which can achieve online monitoring of the network structure by observing the variation tendency of the reconstruction error. When the topology change occurs, a Gaussian process with a composite kernel is applied to the modeling of the pretrained GSJKN residual to adapt to the new topology. The embedding of the physical structural knowledge enables the proposed GSJKN method to restore the missing/noisy values utilizing the adjacent measurements, which enhances the robustness to typical data acquisition errors. The adopted DAE network and special GARL-based transfer method further allow the DSSE method to rapidly detect and adapt to the topology change, as well as achieve effective quantification of the estimation uncertainties. Comparative tests on balanced and unbalanced systems demonstrate the accuracy, robustness, and adaptability of the proposed DSSE method.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 3","pages":"928-939"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10851869","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10851869/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper develops a physics-guided graph network to enhance the robustness of distribution system state estimation (DSSE) against anomalous real-time measurements, as well as a deep auto-encoder (DAE)-based detector and a Gaussian process-aided residual learning (GARL) to deal with challenges arising from topology changes. A global-scanning jumping knowledge network (GSJKN) is first designed to establish the regression rule between the measurement data and state variables. The structural information of distribution system (DS) and a global-scanning module are incorporated to guide the propagation of scarce measurements in the graph topology, contributing to valid estimation precision in sparsely measured DSs. To monitor the topology changes of the network, a DAE network is employed to learn an efficient representation of the measurements of the system under a certain topology, which can achieve online monitoring of the network structure by observing the variation tendency of the reconstruction error. When the topology change occurs, a Gaussian process with a composite kernel is applied to the modeling of the pretrained GSJKN residual to adapt to the new topology. The embedding of the physical structural knowledge enables the proposed GSJKN method to restore the missing/noisy values utilizing the adjacent measurements, which enhances the robustness to typical data acquisition errors. The adopted DAE network and special GARL-based transfer method further allow the DSSE method to rapidly detect and adapt to the topology change, as well as achieve effective quantification of the estimation uncertainties. Comparative tests on balanced and unbalanced systems demonstrate the accuracy, robustness, and adaptability of the proposed DSSE method.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.