Ji Hun Seo , Hyun Seong Yang , Min Ho Seo , Seon Joon Kim , Juyun Lee , Seyoung Kee , Saeed Habibpour , Sung-Nam Lim , Wook Ahn , Yun-Seok Jun
{"title":"Aligning graphene sheets in aerogel-based composites for enhanced electromagnetic interference absorption","authors":"Ji Hun Seo , Hyun Seong Yang , Min Ho Seo , Seon Joon Kim , Juyun Lee , Seyoung Kee , Saeed Habibpour , Sung-Nam Lim , Wook Ahn , Yun-Seok Jun","doi":"10.1016/j.carbon.2025.120463","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates graphene aerogel-based polydimethylsiloxane (PDMS) composites designed to improve electromagnetic interference (EMI) absorption. These composites are fabricated by infiltrating PDMS into graphene aerogel produced by uni-directional freezing and thermal reduction. This results in a graphene structure with highly aligned orientations. The composites in longitudinal directions exhibit a shielding effectiveness by absorption (SE<sub>A</sub>) of 8.6 dB/mm and a shielding effectiveness by total (SE<sub>T</sub>) of 11.5 dB/mm in 8.2–12.4 (X-band) frequency range. On the other hand, the transverse direction shows a lower EMI shielding capability with a SE<sub>A</sub> of 4.5 dB/mm and a SE<sub>T</sub> of 6.7 dB/mm. These are attributed to the fact that the aligned orientation of the fillers increased the internal multiple scattering of incident electromagnetic wave, which increases the propagation path and energy attenuation. These results demonstrate that controlling the filler orientation can significantly increase the EMI performances of graphene/PDMS composites.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"242 ","pages":"Article 120463"},"PeriodicalIF":10.5000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622325004798","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates graphene aerogel-based polydimethylsiloxane (PDMS) composites designed to improve electromagnetic interference (EMI) absorption. These composites are fabricated by infiltrating PDMS into graphene aerogel produced by uni-directional freezing and thermal reduction. This results in a graphene structure with highly aligned orientations. The composites in longitudinal directions exhibit a shielding effectiveness by absorption (SEA) of 8.6 dB/mm and a shielding effectiveness by total (SET) of 11.5 dB/mm in 8.2–12.4 (X-band) frequency range. On the other hand, the transverse direction shows a lower EMI shielding capability with a SEA of 4.5 dB/mm and a SET of 6.7 dB/mm. These are attributed to the fact that the aligned orientation of the fillers increased the internal multiple scattering of incident electromagnetic wave, which increases the propagation path and energy attenuation. These results demonstrate that controlling the filler orientation can significantly increase the EMI performances of graphene/PDMS composites.
期刊介绍:
The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.