Electrophysiological and molecular docking analysis of 1,8-Cineole's effects on potassium currents in mouse DRG neurons

IF 2.5 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ana Beatriz Gomes , Lucas Almeida Vaz , Jeremias Martins Gonçalves , José Ednésio da Cruz Freire , Kerly Shamyra da Silva-Alves , Humberto Cavalcante Joca , Bianca de Sousa Barbosa-Ferreira , Andrelina Noronha Coelho-de-Souza , José Henrique Leal-Cardoso , Francisco Walber Ferreira-da-Silva
{"title":"Electrophysiological and molecular docking analysis of 1,8-Cineole's effects on potassium currents in mouse DRG neurons","authors":"Ana Beatriz Gomes ,&nbsp;Lucas Almeida Vaz ,&nbsp;Jeremias Martins Gonçalves ,&nbsp;José Ednésio da Cruz Freire ,&nbsp;Kerly Shamyra da Silva-Alves ,&nbsp;Humberto Cavalcante Joca ,&nbsp;Bianca de Sousa Barbosa-Ferreira ,&nbsp;Andrelina Noronha Coelho-de-Souza ,&nbsp;José Henrique Leal-Cardoso ,&nbsp;Francisco Walber Ferreira-da-Silva","doi":"10.1016/j.bbrc.2025.151968","DOIUrl":null,"url":null,"abstract":"<div><div>1,8-cineole (CIN) is a monoterpene widely used in traditional medicine, as it promotes biological and pharmacological effects, including the inhibition of neuronal excitability. This inhibition might be due to ion channel blockade, as reported for voltage-dependent Na<sup>+</sup> and Ca<sup>2+</sup> channels. However, voltage-dependent K<sup>+</sup> channels (K<sub>v</sub>) are also relevant proteins in neuronal excitability. Thus, this study investigated the effects of CIN on potassium current (I<sub>K+</sub>) in dissociated neurons from mouse dorsal root ganglia (DRG) using electrophysiological and molecular docking approaches. The whole-cell patch-clamp technique recorded I<sub>K+</sub> in voltage-clamp mode. Other experiments recorded action potentials (APs) in the current-clamp mode, and molecular docking used specific software (AutoDock Vina, LigPlot<sup>+</sup>, PyMol). Consequently, CIN achieved a partial concentration-dependent inhibition of I<sub>K+</sub>. CIN at 3.0 and 6.0 mM showed similar blockade values of ∼50 % of peak and sustained I<sub>K+</sub>. IV plots from cells exposed to 3.0 mM CIN shifted by ∼15 mV toward negative values in the G/G<sub>max</sub> curve of sustained I<sub>K+</sub>. Peak I<sub>K +</sub> had no significant shift. Molecular docking simulations demonstrated that CIN interacts with the binding pockets of K<sub>v</sub>2.1 and K<sub>v</sub>3.4 channels with ΔG values of −4.7 kcal.mol<sup>−1</sup> and −2.0 kcal.mol<sup>−1</sup> interaction energy, respectively. This study also investigated 3 mM CIN effects on neuronal excitability. CIN blocked APs in two of eight neurons and altered several electrophysiological parameters related to excitability in the remaining six neurons. These parameters included AP amplitude, AP maximum rise slope, and AP time-to-peak without changes in resting membrane potential. This study concluded that CIN blocks total I<sub>K+</sub> and interacts with K<sup>+</sup> channels. Also, the changes in neuronal excitability might be due to CIN effects on K<sup>+</sup> channels, working through a mechanism independent of resting membrane potential.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"773 ","pages":"Article 151968"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25006825","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

1,8-cineole (CIN) is a monoterpene widely used in traditional medicine, as it promotes biological and pharmacological effects, including the inhibition of neuronal excitability. This inhibition might be due to ion channel blockade, as reported for voltage-dependent Na+ and Ca2+ channels. However, voltage-dependent K+ channels (Kv) are also relevant proteins in neuronal excitability. Thus, this study investigated the effects of CIN on potassium current (IK+) in dissociated neurons from mouse dorsal root ganglia (DRG) using electrophysiological and molecular docking approaches. The whole-cell patch-clamp technique recorded IK+ in voltage-clamp mode. Other experiments recorded action potentials (APs) in the current-clamp mode, and molecular docking used specific software (AutoDock Vina, LigPlot+, PyMol). Consequently, CIN achieved a partial concentration-dependent inhibition of IK+. CIN at 3.0 and 6.0 mM showed similar blockade values of ∼50 % of peak and sustained IK+. IV plots from cells exposed to 3.0 mM CIN shifted by ∼15 mV toward negative values in the G/Gmax curve of sustained IK+. Peak IK + had no significant shift. Molecular docking simulations demonstrated that CIN interacts with the binding pockets of Kv2.1 and Kv3.4 channels with ΔG values of −4.7 kcal.mol−1 and −2.0 kcal.mol−1 interaction energy, respectively. This study also investigated 3 mM CIN effects on neuronal excitability. CIN blocked APs in two of eight neurons and altered several electrophysiological parameters related to excitability in the remaining six neurons. These parameters included AP amplitude, AP maximum rise slope, and AP time-to-peak without changes in resting membrane potential. This study concluded that CIN blocks total IK+ and interacts with K+ channels. Also, the changes in neuronal excitability might be due to CIN effects on K+ channels, working through a mechanism independent of resting membrane potential.
1,8-桉树脑对小鼠DRG神经元钾电流影响的电生理和分子对接分析
1,8-桉树脑(CIN)是一种广泛应用于传统医学的单萜,因为它促进生物和药理作用,包括抑制神经元兴奋性。这种抑制可能是由于离子通道阻断,如报道的电压依赖性Na+和Ca2+通道。然而,电压依赖性K+通道(Kv)也是神经元兴奋性的相关蛋白。因此,本研究采用电生理和分子对接方法研究了CIN对小鼠背根神经节(DRG)游离神经元钾电流(IK+)的影响。全细胞膜片钳技术在电压钳模式下记录IK+。其他实验在电流钳模式下记录动作电位(ap),分子对接使用特定的软件(AutoDock Vina, LigPlot+, PyMol)。因此,CIN实现了部分浓度依赖性IK+抑制。3.0 mM和6.0 mM的CIN表现出相似的阻断值,约为峰值和持续IK+的50%。暴露于3.0 mM CIN的细胞的IV图在持续IK+的G/Gmax曲线上向负值移动了~ 15 mV。IK +峰值没有明显变化。分子对接模拟表明,CIN与Kv2.1和Kv3.4通道的结合袋相互作用的ΔG值分别为−4.7 kcal.mol−1和−2.0 kcal.mol−1。本研究还探讨了3mm CIN对神经元兴奋性的影响。CIN阻断了8个神经元中的2个ap,并改变了其余6个神经元中与兴奋性相关的几个电生理参数。这些参数包括静息膜电位不变的AP振幅、AP最大上升斜率和AP到达峰值时间。本研究得出结论,CIN阻断总IK+并与K+通道相互作用。此外,神经元兴奋性的变化可能是由于CIN对K+通道的影响,通过独立于静息膜电位的机制起作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical and biophysical research communications
Biochemical and biophysical research communications 生物-生化与分子生物学
CiteScore
6.10
自引率
0.00%
发文量
1400
审稿时长
14 days
期刊介绍: Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology ; molecular biology; neurobiology; plant biology and proteomics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信