{"title":"Benzophenone-3: A systematic review on aquatic toxicity, pollution status, environmental risk assessment, and treatment approaches","authors":"Naveeta Kotia , Reshma Sinha , Valbona Aliko , Caterina Faggio","doi":"10.1016/j.scitotenv.2025.179740","DOIUrl":null,"url":null,"abstract":"<div><div>Benzophenone-3 (BP-3) is a widely employed UV filter and forms the composition of sunscreens and various personal care products. It enters the water through human recreational activities and through ineffective degradation in conventional wastewater treatment plants. Due to its global detection, low water solubility, diminished biodegradability, elevated sorption potential, potential bioaccumulation, and endocrine-disrupting effects, it has been categorized as an emerging pollutant. The detection of BP-3 and its metabolites in various aquatic organisms globally has raised concerns about potential repercussions in the food chain. Environmental risk assessments revealed hazard quotient (HQ) values between 0.04 and 12.0 for freshwater habitats, indicating significant risks. The predicted no-effect concentrations (PNECs) ranged from 0.0139 to 19.1 μg/L, indicating varied risk levels and necessitating further refinement. Monitoring sewage plants using different treatment methods concluded the addition of metabolites and degradation by-products with added negative impact and other limitations. Assessment of advanced oxidation process of BP-3 removal strategies displayed reduced by-product toxicity and better removal rates using sonochemical decomposition (98 %), potassium permanganate treatment (91.3 %), and cobalt ferrite-activated persulfate oxidation technology (91 %). Despite this, these showed implementation hindrances, large-scalability issues, and lower degradation efficiencies at real matrices. Recent developments highlight feasible techniques such as phytoremediation, microalgae-assisted mitigation, and microbial degradation with improved removal rates and minimized by-product toxicity. Present review systematically examines the contamination level of BP-3 and its ecotoxicological impact on aquatic ecosystems, elucidating the intrinsic mechanism of action and identifying current knowledge deficiencies.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"985 ","pages":"Article 179740"},"PeriodicalIF":8.2000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725013816","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Benzophenone-3 (BP-3) is a widely employed UV filter and forms the composition of sunscreens and various personal care products. It enters the water through human recreational activities and through ineffective degradation in conventional wastewater treatment plants. Due to its global detection, low water solubility, diminished biodegradability, elevated sorption potential, potential bioaccumulation, and endocrine-disrupting effects, it has been categorized as an emerging pollutant. The detection of BP-3 and its metabolites in various aquatic organisms globally has raised concerns about potential repercussions in the food chain. Environmental risk assessments revealed hazard quotient (HQ) values between 0.04 and 12.0 for freshwater habitats, indicating significant risks. The predicted no-effect concentrations (PNECs) ranged from 0.0139 to 19.1 μg/L, indicating varied risk levels and necessitating further refinement. Monitoring sewage plants using different treatment methods concluded the addition of metabolites and degradation by-products with added negative impact and other limitations. Assessment of advanced oxidation process of BP-3 removal strategies displayed reduced by-product toxicity and better removal rates using sonochemical decomposition (98 %), potassium permanganate treatment (91.3 %), and cobalt ferrite-activated persulfate oxidation technology (91 %). Despite this, these showed implementation hindrances, large-scalability issues, and lower degradation efficiencies at real matrices. Recent developments highlight feasible techniques such as phytoremediation, microalgae-assisted mitigation, and microbial degradation with improved removal rates and minimized by-product toxicity. Present review systematically examines the contamination level of BP-3 and its ecotoxicological impact on aquatic ecosystems, elucidating the intrinsic mechanism of action and identifying current knowledge deficiencies.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.