Comparison of thermal and fire properties of PLA-based composites based on FDM printed graphite/molybdenum disulfide and siloxene

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
A. Łapińska , A.J. Panas , R. Przekop , B. Sztorch , D. Pakuła , J. Głowacka , T. Gołofit , A. Dużyńska , P. Płatek , K. Cieplak , I. Wyrębska , B. Kukfisz , P. Jóźwik
{"title":"Comparison of thermal and fire properties of PLA-based composites based on FDM printed graphite/molybdenum disulfide and siloxene","authors":"A. Łapińska ,&nbsp;A.J. Panas ,&nbsp;R. Przekop ,&nbsp;B. Sztorch ,&nbsp;D. Pakuła ,&nbsp;J. Głowacka ,&nbsp;T. Gołofit ,&nbsp;A. Dużyńska ,&nbsp;P. Płatek ,&nbsp;K. Cieplak ,&nbsp;I. Wyrębska ,&nbsp;B. Kukfisz ,&nbsp;P. Jóźwik","doi":"10.1016/j.ijheatmasstransfer.2025.127276","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the development and characterization of advanced polylactic acid (PLA)-based composites designed for enhanced thermal management and fire resistance in additive manufacturing (AM) applications. Utilizing fused deposition modeling (FDM), composites were reinforced with graphite (G), molybdenum disulfide (MoS₂), and siloxene (S) at varying filler concentrations. Particular attention was given to the impact of FDM-related structural imperfections, such as micro-gaps and porosity, on the functional performance of the printed materials. A comprehensive set of characterization techniques — including scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), density evaluation, thermal diffusivity measurements via a modified Angstrom method, and cone calorimetry — was employed to gain an in-depth understanding of the composites' microstructure, thermal behavior, and fire performance.</div><div>Despite structural defects inherent to the FDM process, composites with the highest graphite and molybdenum disulfide content (G15/M2) exhibited a 44 % increase in thermal diffusivity and a 40 % improvement in thermal conductivity compared to neat PLA. Conversely, siloxene-based composites (S2.5) demonstrated reduced thermal transport properties, offering potential for thermal insulation applications. Fire performance tests revealed a delay in peak heat release rate (pHRR) and a significant reduction in total heat release (THR) for filler-containing samples, particularly for G15/M2 and S2.5. Furthermore, the synergistic action of graphite and molybdenum disulfide notably decreased total smoke release (TSR), although higher siloxene concentrations led to increased smoke production.</div><div>The findings underline the dual functional benefits achievable through targeted filler selection and concentration optimization, offering pathways for designing advanced AM-tailored materials with enhanced thermal management and fire safety properties. Future work should focus on refining FDM process parameters to mitigate microstructural defects and maximize composite performance for engineering applications.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"250 ","pages":"Article 127276"},"PeriodicalIF":5.0000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931025006155","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the development and characterization of advanced polylactic acid (PLA)-based composites designed for enhanced thermal management and fire resistance in additive manufacturing (AM) applications. Utilizing fused deposition modeling (FDM), composites were reinforced with graphite (G), molybdenum disulfide (MoS₂), and siloxene (S) at varying filler concentrations. Particular attention was given to the impact of FDM-related structural imperfections, such as micro-gaps and porosity, on the functional performance of the printed materials. A comprehensive set of characterization techniques — including scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), density evaluation, thermal diffusivity measurements via a modified Angstrom method, and cone calorimetry — was employed to gain an in-depth understanding of the composites' microstructure, thermal behavior, and fire performance.
Despite structural defects inherent to the FDM process, composites with the highest graphite and molybdenum disulfide content (G15/M2) exhibited a 44 % increase in thermal diffusivity and a 40 % improvement in thermal conductivity compared to neat PLA. Conversely, siloxene-based composites (S2.5) demonstrated reduced thermal transport properties, offering potential for thermal insulation applications. Fire performance tests revealed a delay in peak heat release rate (pHRR) and a significant reduction in total heat release (THR) for filler-containing samples, particularly for G15/M2 and S2.5. Furthermore, the synergistic action of graphite and molybdenum disulfide notably decreased total smoke release (TSR), although higher siloxene concentrations led to increased smoke production.
The findings underline the dual functional benefits achievable through targeted filler selection and concentration optimization, offering pathways for designing advanced AM-tailored materials with enhanced thermal management and fire safety properties. Future work should focus on refining FDM process parameters to mitigate microstructural defects and maximize composite performance for engineering applications.
FDM印刷石墨/二硫化钼和硅氧烷pla基复合材料的热性能和防火性能比较
本研究探讨了先进的聚乳酸(PLA)基复合材料的开发和表征,该复合材料旨在增强增材制造(AM)应用中的热管理和耐火性能。利用熔融沉积模型(FDM),在不同的填充浓度下,用石墨(G)、二硫化钼(MoS 2)和硅氧烷(S)增强复合材料。特别注意与fdm相关的结构缺陷,如微间隙和孔隙率,对印刷材料的功能性能的影响。研究人员采用了一套全面的表征技术,包括扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT-IR)、x射线衍射(XRD)、拉曼光谱、差示扫描量热法(DSC)、热重分析(TGA)、密度评估、通过改进的埃氏法进行的热扩散系数测量和锥量热法,以深入了解复合材料的微观结构、热行为和防火性能。尽管FDM工艺存在固有的结构缺陷,但与纯PLA相比,石墨和二硫化钼含量(G15/M2)最高的复合材料的热扩散系数增加了44%,导热系数提高了40%。相反,硅氧烷基复合材料(S2.5)表现出较低的热传递性能,为隔热应用提供了潜力。防火性能测试显示,对于含有填料的样品,特别是G15/M2和S2.5,峰值热释放率(pHRR)延迟,总热释放率(THR)显着降低。此外,石墨和二硫化钼的协同作用显著降低了总烟雾释放量(TSR),尽管较高的硅氧烷浓度会导致烟雾产量增加。研究结果强调了通过有针对性的填料选择和浓度优化可以实现的双重功能优势,为设计具有增强热管理和消防安全性能的先进am定制材料提供了途径。未来的工作应侧重于改进FDM工艺参数,以减轻微结构缺陷,并最大限度地提高工程应用的复合材料性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信