Zhi-Guo Wang , Ming Cai , Xue Xiao , Run-Lin Sun , Xi Liao , Rui Hong , Ju-Xiang Gou , Ka Li , Jia-Zhuang Xu , Zhong-Ming Li
{"title":"Peritoneum-inspired adaptive hydrogel sheath orchestrating long-term lubrication and antibacterial properties for drainage tube intubation","authors":"Zhi-Guo Wang , Ming Cai , Xue Xiao , Run-Lin Sun , Xi Liao , Rui Hong , Ju-Xiang Gou , Ka Li , Jia-Zhuang Xu , Zhong-Ming Li","doi":"10.1016/j.biomaterials.2025.123405","DOIUrl":null,"url":null,"abstract":"<div><div>Drainage tube (DT) intubation is frequently accompanied by distressing and even life-threatening complications. Herein, we engineer a peritoneum-inspired adaptive hydrogel sheath orchestrating long-term lubrication and broad-spectrum antibacterial properties onto the commercially-available DT surface for safe medical intervention. A thin conformal hydrogel sheath is formed by constructing the semi-interpenetrating hydrogel network to serve as the hydration layer, mimicking the lubricative peritoneal fluid layer of the peritoneum. The exposed protonated amino group of the semi-interpenetrating hydrogel network imparts the hydrogel sheath with an intrinsic antibacterial capacity, imitating the peritoneal inherent immunoregulatory function that resists bacterial invasion. The resultant hydrogel sheath exhibits the long-term lubricity, prominent broad-spectrum antibacterial property, remarkable robustness in various harsh environments, and excellent antifouling property without comprising biocompatibility. As demonstrated by an <em>in vivo</em> rabbit model of peritoneal drainage, the application of the hydrogel sheath on DT not only alleviates skin tissue trauma and inflammation effectively, but also inhibits bacterial invasion to avoid potential infection. The current work opens a valuable avenue to develop the functional DT to meet clinical needs.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"323 ","pages":"Article 123405"},"PeriodicalIF":12.8000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225003242","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Drainage tube (DT) intubation is frequently accompanied by distressing and even life-threatening complications. Herein, we engineer a peritoneum-inspired adaptive hydrogel sheath orchestrating long-term lubrication and broad-spectrum antibacterial properties onto the commercially-available DT surface for safe medical intervention. A thin conformal hydrogel sheath is formed by constructing the semi-interpenetrating hydrogel network to serve as the hydration layer, mimicking the lubricative peritoneal fluid layer of the peritoneum. The exposed protonated amino group of the semi-interpenetrating hydrogel network imparts the hydrogel sheath with an intrinsic antibacterial capacity, imitating the peritoneal inherent immunoregulatory function that resists bacterial invasion. The resultant hydrogel sheath exhibits the long-term lubricity, prominent broad-spectrum antibacterial property, remarkable robustness in various harsh environments, and excellent antifouling property without comprising biocompatibility. As demonstrated by an in vivo rabbit model of peritoneal drainage, the application of the hydrogel sheath on DT not only alleviates skin tissue trauma and inflammation effectively, but also inhibits bacterial invasion to avoid potential infection. The current work opens a valuable avenue to develop the functional DT to meet clinical needs.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.