{"title":"Moduli spaces of weighted pointed stable curves and toric topology of Grassmann manifolds","authors":"Victor M. Buchstaber , Svjetlana Terzić","doi":"10.1016/j.geomphys.2025.105533","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we establish fundamental relations between the famous problem of compactifications of the moduli space <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi></mrow></msub></math></span> of ordered <em>n</em> distinct points on <span><math><mi>C</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> and toric topology of the complex Grassmann manifolds <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub></math></span>. The best known is the Deligne-Mumford compactification <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi></mrow></msub></math></span>. The Losev-Manin compactification <span><math><msub><mrow><mover><mrow><mi>L</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub></math></span> is also closely related to important questions in mathematical physics and toric geometry. These compactifications belong to the family of Hassett compactifications <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi><mo>,</mo><mi>A</mi></mrow></msub></math></span> of moduli spaces of weighted pointed stable curves. In this paper we show that the orbit space <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub><mo>/</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> of complex Grassmann manifolds <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub></math></span> by the canonical action of the compact torus <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> of the complexity <span><math><mi>n</mi><mo>−</mo><mn>3</mn></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> serves as a universal space in a sense that for any Hassett compactification <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi><mo>,</mo><mi>A</mi></mrow></msub></math></span> there exists a subspace <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span> in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub><mo>/</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and birational morphism <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi><mo>,</mo><mi>A</mi></mrow></msub><mo>→</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span>. We describe large class of the set of weights <span><math><mi>A</mi></math></span> for which this birational morphism gives rise to an isomorphism. This provides topological model for the Hassett category in which Deligne-Mumford compactification <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi></mrow></msub></math></span> is the initial object. Manin showed that compactification <span><math><msub><mrow><mover><mrow><mi>L</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub></math></span> is a smooth toric variety over permutohedron. We provide explicit geometric realization of the manifold <span><math><msub><mrow><mover><mrow><mi>L</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub></math></span> as a toric compactification of an orbit for algebraic torus <span><math><msup><mrow><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow></msup></math></span> - action on <span><math><msup><mrow><mo>(</mo><mi>C</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>N</mi></mrow></msup></math></span>, <span><math><mi>N</mi><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow></math></span> and describe the epimorphism <span><math><msub><mrow><mover><mrow><mi>M</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi></mrow></msub><mo>→</mo><msub><mrow><mover><mrow><mi>L</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mrow><mn>0</mn><mo>,</mo><mi>n</mi><mo>,</mo><mn>2</mn></mrow></msub></math></span> in terms of Fulton - MacPherson, De Concini-Procesi and Li wonderful compactification.<span><span><sup>1</sup></span></span></div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"215 ","pages":"Article 105533"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044025001172","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we establish fundamental relations between the famous problem of compactifications of the moduli space of ordered n distinct points on and toric topology of the complex Grassmann manifolds . The best known is the Deligne-Mumford compactification . The Losev-Manin compactification is also closely related to important questions in mathematical physics and toric geometry. These compactifications belong to the family of Hassett compactifications of moduli spaces of weighted pointed stable curves. In this paper we show that the orbit space of complex Grassmann manifolds by the canonical action of the compact torus of the complexity , serves as a universal space in a sense that for any Hassett compactification there exists a subspace in and birational morphism . We describe large class of the set of weights for which this birational morphism gives rise to an isomorphism. This provides topological model for the Hassett category in which Deligne-Mumford compactification is the initial object. Manin showed that compactification is a smooth toric variety over permutohedron. We provide explicit geometric realization of the manifold as a toric compactification of an orbit for algebraic torus - action on , and describe the epimorphism in terms of Fulton - MacPherson, De Concini-Procesi and Li wonderful compactification.1
期刊介绍:
The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields.
The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered.
The Journal covers the following areas of research:
Methods of:
• Algebraic and Differential Topology
• Algebraic Geometry
• Real and Complex Differential Geometry
• Riemannian Manifolds
• Symplectic Geometry
• Global Analysis, Analysis on Manifolds
• Geometric Theory of Differential Equations
• Geometric Control Theory
• Lie Groups and Lie Algebras
• Supermanifolds and Supergroups
• Discrete Geometry
• Spinors and Twistors
Applications to:
• Strings and Superstrings
• Noncommutative Topology and Geometry
• Quantum Groups
• Geometric Methods in Statistics and Probability
• Geometry Approaches to Thermodynamics
• Classical and Quantum Dynamical Systems
• Classical and Quantum Integrable Systems
• Classical and Quantum Mechanics
• Classical and Quantum Field Theory
• General Relativity
• Quantum Information
• Quantum Gravity