MATLAB-TRNSYS simulation framework for MPC-based optimization of hybrid renewable energy systems

IF 2.7 Q2 MULTIDISCIPLINARY SCIENCES
Hamza Benzzine , Hicham Labrim , Ibtissam el Aouni , Yasmine Achour , Abderrahim bajit , Aouatif Saad , Hamza Ettahri , Mohamed Balli , Driss Zejli , Rachid El Bouayadi
{"title":"MATLAB-TRNSYS simulation framework for MPC-based optimization of hybrid renewable energy systems","authors":"Hamza Benzzine ,&nbsp;Hicham Labrim ,&nbsp;Ibtissam el Aouni ,&nbsp;Yasmine Achour ,&nbsp;Abderrahim bajit ,&nbsp;Aouatif Saad ,&nbsp;Hamza Ettahri ,&nbsp;Mohamed Balli ,&nbsp;Driss Zejli ,&nbsp;Rachid El Bouayadi","doi":"10.1016/j.sciaf.2025.e02751","DOIUrl":null,"url":null,"abstract":"<div><div>Hybrid renewable energy systems (HRES) combining wind turbines, photovoltaic arrays and hydrogen storage can supply dispatchable low‑carbon power while buffering resource variability. This study presents a nonlinear Model Predictive Controller (MPC) implemented in a MATLAB–TRNSYS co‑simulation to coordinate generation, electrolysis, compressed‑gas storage and PEM fuel‑cell reconversion over a 6 h rolling horizon. The controller maximises renewable utilisation and maintains the hydrogen state‑of‑charge (SOC) within safe limits, enabling the stored H₂ to serve later as an energy vector or chemical feedstock. Relative to a deterministic single‑step strategy, the predictive MPC reduces hydrogen consumption by 34.6 %, halves the SOC variance and increases the H₂/O₂ co‑production rate by 37 %, yielding a higher overall conversion efficiency. Under a variable 1.2 MW demand profile the scheme meets the load with a renewable penetration of 54 %. These results demonstrate that anticipatory, constraint‑aware control provides a robust pathway for reliable and scalable hydrogen‑centred HRES.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"28 ","pages":"Article e02751"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227625002212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Hybrid renewable energy systems (HRES) combining wind turbines, photovoltaic arrays and hydrogen storage can supply dispatchable low‑carbon power while buffering resource variability. This study presents a nonlinear Model Predictive Controller (MPC) implemented in a MATLAB–TRNSYS co‑simulation to coordinate generation, electrolysis, compressed‑gas storage and PEM fuel‑cell reconversion over a 6 h rolling horizon. The controller maximises renewable utilisation and maintains the hydrogen state‑of‑charge (SOC) within safe limits, enabling the stored H₂ to serve later as an energy vector or chemical feedstock. Relative to a deterministic single‑step strategy, the predictive MPC reduces hydrogen consumption by 34.6 %, halves the SOC variance and increases the H₂/O₂ co‑production rate by 37 %, yielding a higher overall conversion efficiency. Under a variable 1.2 MW demand profile the scheme meets the load with a renewable penetration of 54 %. These results demonstrate that anticipatory, constraint‑aware control provides a robust pathway for reliable and scalable hydrogen‑centred HRES.
基于mpc的混合可再生能源系统优化MATLAB-TRNSYS仿真框架
混合可再生能源系统(HRES)结合了风力涡轮机、光伏阵列和储氢装置,可以在缓冲资源可变性的同时提供可调度的低碳电力。本研究提出了一个非线性模型预测控制器(MPC),在MATLAB-TRNSYS协同仿真中实现,以协调6小时滚动水平上的发电,电解,压缩气体储存和PEM燃料电池再转换。该控制器最大限度地提高了可再生能源的利用率,并将氢的荷电状态(SOC)保持在安全范围内,使存储的氢能够在以后用作能量载体或化学原料。与确定性单步策略相比,预测性MPC可将氢消耗降低34.6%,将SOC方差减半,并将H₂/O₂产率提高37%,从而提高整体转换效率。在可变的1.2兆瓦需求剖面下,该方案以54%的可再生能源渗透率满足负荷。这些结果表明,预期的、约束感知的控制为可靠的、可扩展的氢中心HRES提供了一条强大的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信